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Preface of the editor
Internal erosion by pore fluid flow repeatedly led to failure of earthwork structures like
dams or dikes in the past. Previous research was mainly restricted to granular soils
without any bonding at the particle contacts. However, many natural granular soils
exhibit some kind of cementation, e.g. due to calcite precipitation or the presence of
cohesive fines. Considering the few information in the literature, the knowledge and
understanding of erosion phenomena in cemented granular soils is limited so far.

This motivated the German Federal Institute for Materials Research and Testing
(Bundesanstalt für Materialforschung und -prüfung, BAM) in Berlin and the French
National Research Institute for Agriculture, Food and Environment (INRAE) in Aix-en-
Provence to launch a scientific collaboration within the binational research project
“Coupled micromechanical modelling for the analysis and prevention of erosion in
hydraulic and offshore infrastructures” (COMET) funded by German Research Coun-
cil (DFG) and French National Research Agency (ANR). Within this project two PhD
theses have been prepared, one by Abbas Farhat at INRAE focussing on experimental
research mainly supervised by Dr. Pierre Philippe, and another one by Mohammad
Sanayei at BAM concentrating on numerical modeling under the main supervision of
Dr. Pablo Cuéllar. The research was supported by Aix-Marseille University in France
and Ruhr-Universität Bochum in Germany, leading to a binational PhD degree for
both candidates.

The dissertation of Mohammad Sanayei is dedicated to the practical problem of
erosion-induced failure occurring during the installation of suction caisson founda-
tions in cemented granular soils. Suction caisson foundations are becoming increas-
ingly popular for offshore wind turbines, because, in contrast to the conventional pile
driving, their installation is not associated with the generation of large noise, and they
can thus be considered as more environmentally friendly. Furthermore, in contrast
to monopiles, suction caisson foundations can easily be de-installed at the end of
their lifetime. The installation of the caisson foundations into the seabed is realized
by the application of a suction to the inner of the caisson, as a result of pumping out
water from the caisson. The progressively increasing pressure difference acting on the
lid of the bucket due to the increase of the suction drives the bucket into the ground.
However, the difference between the hydraulic heads outside and inside the bucket
also causes seepage flow from the outer to the inner side, with upwards direction
within the bucket. If the seepage forces exceed a certain threshold they may lead to
erosion of the soil particles up to a localized fluidization of the granular assembly –
the so-called “piping” phenomenon. In order to prevent a foundation failure during
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installation due to erosion phenomena it is thus of crucial importance to design the
installation process of a caisson foundation very carefully. Numerical prediction tools
can support this design.

In his doctoral research Mohammad Sanayei has developed numerical tools that
allow three-dimensional studies of erosion phenomena in cemented granular soils.
He has applied a particle-based approach (Discrete Element Method, DEM) coupled
with the Lattice-Boltzmann Method (LBM) to consider fluid flow in the pore space.
The reason behind, and main advantage of, such grain-resolved “micromechanical”
approach as compared to the more usual continuum-based modelling techniques is
that it permits a physically sound simulation of the percolation flow and its influence
on the granular soil skeleton with few model parameters and without the need of
strong assumptions (e.g. concerning drag coefficients, constitutive models, etc..).
The focus was laid on the 3D extension of a cohesive bond model to consider the
cementation between particles, as well as the enhancement of the computational
efficiency of the code by GPU and CPU parallelization. Mohammad Sanayei has val-
idated the enhanced numerical tools by means of a comparison of his results with
analytical solutions as well as the measurements in macro-scale traction experiments
on biconical samples of bonded glass spheres performed in the twin doctoral thesis of
Abbas Farhat, showing an overall good agreement. In his 3D DEM-LBM simulations
he could qualitatively reproduce the erosion phenomena observed in a previous 2D
numerical study on an embedded wall segment from the literature. His simulation
results demonstrate that cementation of sandy soils can reduce piping erosion.

The numerical tools developed in the framework of the doctoral research of Moham-
mad Sanayei allow a closer insight into the micromechanics of erosion phenomena
in cemented granular soils and are thus of value for further research on this field.
Furthermore, they may support geotechnical engineers in the design of erosion-prone
structures, like suction caisson foundations for offshore wind turbines during the
installation process. It should be mentioned that Mohammad Sanayei has published
all developed code as open source on GitHub.

Torsten Wichtmann
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Résumé
L’érosion par fluidisation lors de l’installation de structures hydrauliques, en parti-
culier au niveau des caissons de succion, pose d’importants défis. Ces caissons de
succion sont de plus en plus utilisées pour la mise en place d’éoliennes off-shore et
cette nouvelle technique d’installation présente de nombreux avantages par rapport
aux méthodes traditionnelles. L’objectif de cette thèse est d’étudier les conditions
d’initiation d’une fluidisation localisée dans le sol de l’installation d’un caisson de
succion, en se focalisant sur les sables cohésifs et non cohésifs. Pour cela, nous avons
développé un modèle numérique couplé solide-fluide en utilisant la méthode des
éléments discrets (DEM) pour simuler les constituants solides et la méthode de Boltz-
mann sur réseau (LBM) pour simuler le fluide. Cette approche nous permet de simuler
chaque particule individuellement ainsi que l’écoulement fluide environnant, ce qui
est indispensable pour l’étude locale de la fluidisation des grains. Des recherches
antérieures sur ce sujet indiquent que les effets de stratification ou de cémentation
dans les fonds marins sablonneux ne sont pas encore bien compris, en particulier en
ce qui concerne l’initiation de fluidisation locale, et qu’ils doivent donc être étudiés
plus en détail. Dans cette étude, nous avons étendu à 3D un modèle de cohésion
déjà fonctionnel à 2D. Dans un premier temps, nous avons testé le nouveau modèle
de cohésion et évalué ses performances en comparant la déflexion des particules
collées en collier à la prédiction issue de la théorie des poutres de Timoshenko. Après
avoir validé avec succès les tests initiaux, nous avons fait passer notre modèle au
niveau supérieur en introduisant des scénarios plus complexes. En particulier, nous
avons développé un modèle numérique dans une configuration d’essai de traction
macroscopique. Nous avons ensuite créé plusieurs tailles d’échantillons et comparé
ces résultats numériques avec des résultats expérimentaux réalisés à l’unité RECOVER
(INRAE, Aix Marseille Université). Étant donné que la génération d’échantillons de
grande taille peut s’avérer coûteux en temps de calcul, nous avons amélioré notre
modèle grâce au calcul parallèle, en utilisant la puissance d’un cluster de CPU (basé
sur le modèle fork-join) et de nombreux threads sur un GPU, le tout en programmation
C/CUDA. Une fois que le modèle a été validé par de résultats réalistes, nous l’avons
intégré dans une plateforme logicielle libre appelée waLBerla. Cela nous a permis de
coupler ce modèle purement DEM à un solver fluide LBM avant de finalement étudier
l’occurrence de la fluidisation localisée lors de l’installation d’un caisson de succion
dans des sables pouvant être cohésifs ou non cohésifs.

Mots-clés : Caisson de succion, érosion par fluidisation localisée, cohésion, DEM,
LBM, waLBerla, calcul parallèle
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Abstract
Piping erosion during installation of offshore foundations, particularly suction buck-
ets, poses significant challenges. Suction buckets are increasingly being used for the
installation of wind turbines and this new method of installation has many advan-
tages compared to traditional methods. The objective of this thesis is to develop a
set of micromechanical simulation tools that permit the analysis of complex coupled
phenomena such as local piping erosion during the installation of suction buckets
in cemented and non-cemented sands. For simulating the solid components, the
Discrete Element Method (DEM) was used, while the Lattice Boltzmann Method
(LBM) was employed for the fluid simulations.This approach enables to simulate
each particle individually as well as the fluid flow through the void space between
particles permitting the study of localized erosion. Previous research on this topic
indicates that the effects of various soil layers and cementation in sandy seabeds
are not yet well understood, particularly concerning the emergence of piping, and
therefore require further investigation. In this study, a well-functioning 2D cohesion
model was extended to 3D conditions. Initially, the newly developed cohesion model
was tested and its performance was evaluated by comparing the deflections of a can-
tilever chain of bonded particles with predictions from Timoshenko beam theory.
Afterwards, more complex models at a larger (macroscopic) scale were introduced. In
particular, a numerical model was developed to reproduce the experimental data of a
set of macromechanical tests on cemented granular samples under traction. Then
a variety of sample sizes was studied comparing the numerical findings with actual
results of experiments conducted at University of Marseille. As generating large-sized
samples can be computationally demanding, the model was improved through paral-
lel computing, utilizing the power of a CPU cluster (using the fork-join model) and
numerous working threads on a GPU, with C/CUDA programming. Once the 3D cohe-
sion model was validated and shown to produce realistic results, it was integrated into
the LBM-DEM coupled framework of the academic open-source simulation platform
waLBerla. This allowed coupling of the newly developed DEM model for cemented
granular materials with a percolating fluid flow in 3D. Finally, some practical scenarios
of a stationary bucket wall section partially embedded in either frictional or cemented
sand under imposed hydraulic gradients across the wall was simulated in full 3D
conditions. The simulations reproduce in essence the percolating flow and granular
displacements observed in steady suction bucket tests, and also the appearance of the
quicksand (piping) condition. This thesis thus provides the tools and demonstrates
the promising potential of fully-resolved micromechanical simulations for addressing
complex geotechnical problems.

Keywords: Suction bucket, piping erosion, cohesion, DEM, LBM, waLBerla, parallel-
computing
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General Introduction
The main goal of this thesis is to develop a 3D coupled soil-fluid model for the analysis
of local erosive phenomena during the installation of suction buckets in either frictio-
nal or cemented soils. This thesis is divided into five main chapters. The first chapter
introduces a brief history and description of suction buckets. It then summarizes the
findings of some relevant studies and experiments performed on the installation of
these buckets in clay and sand. According to TRAN 2005, the installation in sand is
emphasized as trickier compared to clay, due to the insufficiently understood beha-
vior of sand during installation. This chapter also includes a review of the study by
TRAN 2005, in which the deformation of sand during bucket installation is examined.
Tran’s study investigates various factors affecting sand behavior, such as soil layering,
different pumping rates, and bucket geometries. Finally, the objectives of this thesis
will be outlined.

The second chapter discusses the numerical models developed and used in this
study, with particular emphasis on the 3D cohesion model. This model is an extension
of a well-known 2D model from DELENNE et al. 2004, which has been validated in jet
erosion studies, as demonstrated by BENSEGHIER 2019.

The third chapter explains the parallel computing methods employed in this study,
which make the 3D model more time-efficient. The first method is C/CUDA program-
ming, harnessing the power of the GPU and its many threads for sample generation.
The second part explains the Linked-Cell algorithm, which greatly simplifies and
speeds up the investigation of potential overlaps between particles, reducing the mo-
del’s time complexity from O(N

2) to O(N ). Lastly, the Fork-Join model is explained,
which uses the C++ library OpenMP to enable multi-threading inside the CPU, making
the simulations more time-efficient.

The fourth chapter focuses on two test cases to validate the newly developed 3D
cohesion model. The first test involves reproducing the deflection approximation of a
cantilever beam made of bonded particles, comparing it to other well-known models
and Timoshenko’s beam theory. The second test presents a more challenging scenario:
the creation of a numerical model for macro traction tests, with results compared to
experiments conducted at INRAE’s geomechanical laboratory in Aix-en-Provence.

The fifth chapter demonstrates some capabilities of the coupled model focusing
on relevant 3D scenarios of percolation flow and piping erosion underneath an em-
bedded wall section subject to different cross-wall hydraulic gradients. It evaluates
the deformation of sand within the bucket and investigates the factors leading to the
formation of quicksand (piping erosion), which can cause installation failures. Finally,
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the influence of the bucket’s geometry on the magnitude of heave creation inside the
bucket in cemented seabeds is briefly investigated.

All developments related to this study are available in a global repository on GitHub.
The link to this repository can be found in SANAYEI 2023.
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1 State of the art – 1.1 Introduction

1.1 Introduction
Offshore foundations can encounter erosion-related challenges during installation,
especially in sandy seabeds. The primary focus of this thesis is to develop numerical
tools that permit the exploration of one of the most important challenges faced during
the installation of suction buckets, also referred to as suction caissons. As noted by
RAGNI et al. 2020, these offshore foundations are a promising choice for wind turbines,
which can be used either as a mono-bucket or as multi-bucket jacket structures (see
Figure 1.1).

Mono-Bucket Multi-Bucket

FIGURE 1.1 – (left) Mono bucket (GONZÁLEZ 2017) ; (right) Suction buckets as part of a
jacket structure (SPTOFFSHORE 2024).

This type of foundations are open-ended cylinders, closed at the top, equipped with
a valve that allows for the control of water flow by adjusting the internal pressure. Com-
pared to other methods, the installation of this foundation is more straightforward,
time-efficient and environmentally friendly (low noise emissions). Initially, the bucket
is lowered to the seabed, and it begins to penetrate the bed under its self-weight.
Water is then pumped out of the bucket, creating a pressure difference between the
inside and the outside. This pressure difference serves as the driving force, allowing
the bucket to penetrate further until it reaches the desired depth (see Figure 1.2).
Additionally, these foundations can be retrieved and reused through reverse pumping.

TRAN 2005 noted that installing a suction bucket in a clay bed is uncomplicated, and
there’s extensive research on this. However, when compared to clay layers, research on
sandy soil beds is limited. RAGNI et al. 2020 mentioned that while installation in a sand
bed is relatively straightforward, however, there is limited understanding regarding
the changes in the soil state. Many aspects concerning the bucket’s size, properties,
and their impact during installation, as well as the effects of soil layering and cemen-
tation, remain under-explored. This research aims to study local erosion during the
installation of suction buckets and examine the influence of soil cementation on this
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FIGURE 1.2 – How suction buckets are installed (GONZÁLEZ 2017)

process.

1.2 History & advantages of suction buckets
According to TRAN 2005, the suction bucket is still regarded as a relatively new concept,
with the earliest appearance of this foundation type tracing back to the 1950s. The ini-
tial reported instance was a portable core sampler device introduced by MACKERETH

1958. This device featured a sampling tube that was lowered to the lake bottom and
then retrieved using reverse pumping. Another application of this infrastructure type
was noted in 1972 in the North Sea on a minor temporary scale. It wasn’t until 1980 in
the North Sea that suction buckets were employed on a larger scale, with 12 buckets
utilized for anchoring mooring buoys. Field observations during these installations
revealed excessive sand movement inside the bucket when situated in sandy seabeds.
However, these applications were for temporary structures. In 1989, suction buckets
were used as a permanent foundation system for the first time in the Gullfaks C plat-
form. At the time of ANDERSEN et al. 2005 report, over 500 buckets have been installed
in more than 50 locations worldwide, ranging from shallow to deep waters. Buckets are
used in military applications and, as previously discussed, for offshore wind turbines
either as mono-buckets or as part of multi-bucket jacket structures (see Figure 1.1).

This foundation type presents several advantages over traditional methods. As TRAN

et al. 2005 mentioned, they are simple, flexible and cost-effective. The expense as-
sociated with establishing a foundation on the seabed can be categorized into three
portions: (i) geotechnical investigation costs, (ii) fabrication costs, and (iii) installation
costs. For both suction buckets and traditional methods, the geotechnical investiga-
tion costs remain the same. In comparison to traditional methods, while the fabri-
cation of specialized buckets with anchoring and other unique prerequisites might
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seem costlier, the installation costs for suction buckets are significantly lower. This
difference not only compensates for the higher fabrication costs but also makes them
more economical overall. As mentioned earlier, these structures are self-installing
foundations that use their own weight and the pressure difference generated by pum-
ping water from within the bucket. Additionally, they can be retrieved and reused in
subsequent projects by reversing the pumping process.

In another study conducted by BÖHM et al. 2024, this type of foundation was com-
pared to other methods and found to have lower weight, higher stiffness, and reduced
hydrodynamic drag, making it ideal for soil conditions where monopiles cannot be
installed. Furthermore, the installation of suction buckets has low noise emissions,
minimizing the impact on marine mammals.

1.3 Previous installation studies
A pioneering research on suction buckets was conducted by GOODMAN et al. 1961,
driven by military requirements for high mobility and rapid field development in
anchorage systems. At that time, gravity anchors were popular because their bearing
capacity was easy to calculate. Nevertheless, these had limitations due to their low
pullout force to weight ratios which meant larger and heavier anchors were needed.
In contrast, suction buckets emerged as promising candidates due to more efficient
design. The study of GOODMAN et al. 1961 indicated that these vacuum systems
perform effectively in clayey soils. However, in more permeable soils like sand, issues
such as localized piping at the wall skirt tip could arise, leading to vacuum loss or
fluidization due to increased soil permeability. Subsequent studies on this system were
conducted by BROWN and NACCI 1971, and WANG et al. 1977, with Wang proposing
a breakout capacity equation using the Mohr-Colomb failure theory. Initially, the
primary focus of these investigations was the short-term utility of such anchorage. But
from the 1980s onward, with advancements in computing technology, there was a shift
toward exploring these systems for long-term use. This research mainly concentrated
on two areas: (i) the installation process of suction buckets and (ii) their capacity and
performance under both monotonic and cyclic loads. This lead to many numerical
modelings and physical tests in standard gravity and enhanced gravity in centrifuges.

Experimental tests examined a range of soil types, from clay to sand, including
layered and diverse soil compositions. Comprehensive details about these tests are
available in BYRNE et al. 2002, ISKANDER et al. 2002, KELLY et al. 2004, TRAN 2005,
RAGNI et al. 2020, and MA et al. 2022. Regarding numerical investigations, they can
be found in the work of DENG and CARTER 2000, ZDRAVKOVIC et al. 2001, ZHOU et al.
2021, and ZHANG et al. 2024.

From this body of work, it became clear that to optimize these systems, they must be
installed both accurately and effectively. The installation procedure can significantly
impact the performance of the bucket. According to TRAN 2005, installing these sys-
tems in sandy soils poses more challenges than in clayey ones, mainly due to seepage
flows from the outer to the inner side of the bucket (see Fig 1.2). RAGNI et al. 2020 also
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mention that there is limited understanding of soil behavior during the installation of
suction buckets in sandy seabed. The seepage can induce excessive heave within the
bucket, leading to piping failures, as observed in the Gorm field in 1982. In that parti-
cular project, water jets were employed to mitigate heave, and this experience created
a subsequent negative impact on suction caisson use in the field. As mentioned by
TRAN 2005, research on sandy soils is comparatively limited, and much of the field
data remains unpublished. Additionally, RAGNI et al. 2020 noted that there is limited
understanding of the soil state evolution during the installation of the bucket. Thus,
there is still much to learn about sandy soil behavior, necessitating further research
and exploration. HOGERVORST 1980 described various field tests involving small-scale
suction buckets and later, larger-scale tests with suction buckets of 3.8 m diameter
and height ranging from 5 to 10 m. In his studies, Hogervorst noted that minor tilting
during installation or the presence of obstacles didn’t pose significant challenges.
Additionally, it was mentioned that the soil inside the bucket could become liquefied
during installation, leading to reduced friction between the bucket’s inner surface
and the soil. However, specific details about the influence of bucket size and heave
characteristics during installation under different conditions were not provided.
Recent studies have also investigated the installation of suction buckets in sandy
seabeds. WU et al. 2020 conducted limit analysis to estimate penetration resistance
and critical suction in sand and clay. WU et al. 2018 developed methods for obtaining
maximum and minimum suctions required for bucket installation in sand. ZHANG

et al. 2022 investigated the installation of suction caissons in saturated dense fine
sand.

1.4 Remaining issues
In previous sections, the general installation process for suction buckets was described
and it was mentioned that compared to the other methods it can be considered as
straightforward specially in clayey soil. However, there are several remaining issues
that motivate further research and investigation. First, the pumping rate, which is
the only controllable parameter during the installation, needs further investigation
regarding its effect on the installation process. Second, there is limited data concerning
the impact of the bucket’s geometry on the installation. Third, while seepage flow plays
a significant role during installation, the effects of this flow are not fully understood.
Fourth, the formation of sand heave within the bucket remains not well known. It
is unclear whether this formation arises from the soil’s expansion inside the bucket,
the interaction of the inner wall with the sand during penetration, or the inflow of
additional sand through seepage flow from outside of the bucket into the bucket.
In practical scenarios, the soil might be multi-layered, possibly with layers of silt
or cemented sand. The presence of silt and cemented sand might hinder the water
flow and the bucket’s penetration, causing increased resistance to the penetration
of thicker walls into the soil. Furthermore, the behavior of cemented soil and the
formation of heave within a bucket in such soil is not fully understood. Several of
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these issues are explored in the work of TRAN 2005 which will be explained briefly in
the next sections. In the study of TRAN 2005, the behavior of both homogeneous sand
and layered sand-silt mixtures was investigated during the installation of a small-scale
bucket in either a normal gravity (1g) or centrifuge setup. In the following sections,
the results from the 1g tests are briefly presented.

1.5 Installation behaviour at normal gravity (1g)

1.5.1 The PIV method
Particle Image Velocimetry (PIV) is an image-based technique originally developed for
fluid dynamics to track object movements within fluids. In suction bucket experiments,
this technique can be employed to observe heave formation within the bucket and
to study soil deformation. This is achieved by capturing images of moving particles
with a digital camera and then analyzing the results using specific post-processing
software such as GeoPIV, a tool developed at Cambridge University. It is important
to note that this method can have some inaccuracies. Being aware of these potential
issues before starting an experiment can help to ensure more accurate results. More
information regarding this technique can be found in the work of WHITE et al. 2003.

1.5.2 The PIV test setup
In the work of TRAN 2005, sand heave formation within the bucket was investigated
using the PIV method. For this research, a half-bucket (Figure 1.3) was utilized, which
had a diameter D and length of 100 mm and a wall thickness t of 1.2 mm (t/D = 1.2%).

FIGURE 1.3 – Half bucket used in PIV test (TRAN 2005)

As it can be seen in Figure 1.4 the sand heave formation PIV test was carried out in
a chamber with dimensions of 370£220£400 mm (width £ thickness £ height). A
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transparent window was installed at the front of the chamber to allow the recording of
soil movements. The soil sample depth was 200 mm, and the water depth was 170 mm.
The bucket was positioned within the chamber using a guiding system. At the top of the
bucket, a valve connected to a hose enabled the pumping out of water. The evacuated
water was continuously weighed, enabling the calculation of the flow rate. Additionally,
a pressure sensor was used to measure the pressure difference between the inside and
outside of the bucket. Throughout the experiment, soil movements were captured
every two seconds using a 4-megapixel digital camera. The results were subsequently
analyzed using GeoPIV. Different tests were performed with different wall embedment.
According to Tran, upon initiating a test and water pumping, soil deformation occurred
almost instantly, however, no immediate signs of piping phenomena were detected.

FIGURE 1.4 – Test chamber used in the PIV tests on bucket installation (TRAN 2005)

1.5.3 Soil deformation investigation
1- Installation in homogeneous silica sand

The first test series of TRAN 2005 was focused on homogeneous silica sand. The tests
were conducted using three distinct bucket embedments. Initially, a setup with an
embedment of L/D = 0.1, corresponding to a depth of 10 mm, was examined. It should
be mentioned that, in this setup, the bucket stayed stationary and it could not move
upward or downward. The pumping of the water started corresponding to the bucket
penetration rate of 0.5, 0.8 and 1.0 mm/s. In this scenario, the upward movement (or
"heave") of the sand primarily occurred near the inner wall, leaving the majority of the
area with negligible movement (Figure 1.5). The normalized pressure P/(∞0D) for this
test is recorded as 0.75, where ∞0 is the submerged unit weight of the soil (= 10 kN/m3),
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D = 80 mm, and P is the suction pressure. Notably, this test showed minimal sand
inflow from the outside to the inside of the bucket. This means the primary cause of
the heave was identified as the expansion of the inner sand.

FIGURE 1.5 – Soil deformation for L/D = 0.1 (TRAN 2005)

Subsequent tests with embedments of L/D = 0.2 (20 mm) and L/D = 0.3 (30 mm)
yielded similar observations (Figure 1.6). In these setups, the entire inner sand within
the bucket moved upward. However, similar to the 10 mm embedment scenario, the
most noticeable movement was concentrated near the inner wall, while the rest of
the inner sand plug displayed relatively uniform displacement. The corresponding
normalised suction pressures for these two cases were 4.1 and 5.1. For both these tests,
minor displacements were recorded around the outer bucket wall and beneath the
wall tip. All three test setups were also evaluated using higher suction pressures. The
findings indicate that, even under increased pressure, there was no significant sand
inflow and the majority of heave was caused by the expansion of the inner soil.
2- Layered sand-silt soil

Using the same test setup, in the second series of tests, TRAN 2005 introduced a layer
of silt soil in the middle of the soil sample composed of silica sand. The test was
conducted under three different conditions: (i) the bucket tip was positioned above
the silt layer, (ii) the bucket tip was inside the silt layer, and (iii) the bucket tip was
situated below the silt layer. Similar to the previous tests, the bucket was not able to
move in any direction. In the first setup, upon applying suction, the soil around the
bucket’s inner wall moved upwards. However, this movement was less pronounced
than that observed in homogeneous sand. Moreover, the silt layer exhibited a uniform
and slight upward bend. Notably, this upward movement of the silt was confined to
the area directly beneath the bucket, with no significant displacement observed in
the silt layer outside the bucket’s zone. The normalised suction pressure in this test
was recorded as 5.77. Consistent with previous experiments, there was negligible sand
inflow into the bucket. The soil deformation for this setup can be seen in Figure 1.7.

28



1 State of the art – 1.5 Installation behaviour at normal gravity (1g)

L/D = 0.2 L/D = 0.3

FIGURE 1.6 – Soil deformation for L/D = 0.2 and L/D = 0.3 (TRAN 2005)

FIGURE 1.7 – Soil deformation for bucket above silt layer (TRAN 2005)

In the subsequent setup, the bucket tip was positioned inside the silt layer before
suction was applied. Inside the bucket, the soil shifted upwards, with the displacement
at the center being more pronounced than that near the inner wall. The silt layer also
moved upwards uniformly. Given that the bucket tip was situated inside a soil type
with lower permeability compared to sand, the seepage flow into the bucket decreased.
The extent of sand movement observed in this scenario is quite significant, and it is
unlikely to be attributed solely to seepage flow or the introduction of external soils
into the bucket or internal soil expansion. Instead, it is primarily due to the upward
motion of the silt layer. Displacement was also noted in the sand beneath the silt layer,
forming a conical zone that extends to a depth of approximately 100% of the wall
embedment. The recorded normalized suction pressure for this setup was 12.3, which
was much higher than when the wall tip was above the silt layer. The soil displacement
for this particular setup is illustrated in Figure 1.8.
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FIGURE 1.8 – Soil deformation for bucket inside silt layer (TRAN 2005)

In the final setup, the bucket tip was positioned below the silt layer, followed by the
application of suction. As observed in the previous test, the silt layer within the bucket
moved upwards. Additionally, sand movement beneath the silt layer was recorded,
attributed to the creation of a pressure difference across the silt layer and the sub-
sequent loosening of the sand. Furthermore, the sand located above the silt showed
significant upward movement, primarily concentrated at the center of the soil plug.
The normalized suction pressure for this test was recorded as 10.9, which is higher
than when the wall tip was above the silt layer and slightly lower than when the wall
tip was inside the silt layer. The soil deformation for this setup is depicted in Figure
1.9.

FIGURE 1.9 – Soil deformation for suction below silt layer (TRAN 2005)

3- Effect of different pumping rate
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As it was mentioned in previous sections, according to TRAN 2005, the effect of dif-
ferent pumping rate on the installation of the buckets needs further investigation
and research. In the subsequent tests, TRAN 2005 investigated varying pumping rates
during the installation of the bucket (slow: 0.5 mm/s and fast: 6-7 mm/s) within ho-
mogeneous silica sand and layered sand-silt soil. In contrast to the previous test series,
in these tests the bucket was allowed to penetrate into the soil.

When installing the bucket in homogeneous sand at both slow and fast rates, the
process was successful with no piping incidents. The results suggest that changes in
pumping rate significantly influence suction pressure, and rapid pumping might lead
to a notable increase in differential pressure. As observed in Figure 1.10, when consi-
dering different bucket geometries, and using a constant pumping rate for both slow
and fast installations, there is an initial sharp rise in internal suction pressure (until
L/D = 0.1). Following this, the pressure changes linearly with the wall penetration
depth. In this plot, as explained before, the pressure is represented by P

∞0D where P is
the measured peak pressure, ∞0 is the soil’s buoyant (or submerged) unit weight, and
D is the diameter of the bucket. Also in Figure 1.10, S1g-70-260-S refers to a 1g test for
a bucket with a diameter of 70 mm and a weight of 260 grams during slow installation
denoted as "S", whereas in other test cases, "F" denotes fast installation. In a related
study by KIM et al. 2019, an investigation revealed a sudden and significant increase
in internal suction pressure during both slow and fast installation processes. It was ob-
served that a faster pumping rate led to higher suction pressure, but interestingly, the
slope at which the suction pressure increased with embedding consistently appeared
to be parallel between the faster and slower pumping rates.

70 mm bucket 100 mm bucket

FIGURE 1.10 – Comparison of suction pressure development during slow (S) and fast
(F) installations for buckets with diameters of 70 mm and 100 mm and
mass of 260 grams in homogeneous sand (TRAN 2005)

Furthermore, in further tests, the pumping rate was either increased gradually or
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suddenly. The results indicate that suction pressure correlates with the pumping rate’s
magnitude and remains unaffected by the order of changes in the pumping rate. The
comparison of pressure changes due to either a gradual or sudden alteration in the
pumping rate is presented in Figure 1.11. From these diagrams, it is evident that the
final pressure inside the bucket is consistent with the pressure measured for the fast
installations using constant pumping rate. When there is a sudden increase in pum-
ping rate at L/D = 0.5, a corresponding abrupt rise in pressure is noted. Conversely,
when the pumping rate rises gradually, the pressure follows accordingly.

Sudden pumping rate change Gradual pumping rate change

FIGURE 1.11 – Effects of Pumping Rate Variations: S (Slow), F (Fast), SFG (Gradual
Transition from Slow to Fast), and SFS (Sudden Shift from Slow to Fast)
in homogeneous sand for buckets with diameter of 100 mm and mass
of 260 grams (TRAN 2005)

In layered sand-silt soil, two scenarios were examined: (i) the silt layer is at the
very top, requiring the bucket to penetrate through it initially, and (ii) the silt layer is
positioned in the middle of the silica sand (refer to Figure 1.12). For the first scenario,
using a slow pumping rate of 0.1°0.4 mm/s, the bucket’s penetration into the soil
was unsuccessful and resulted in piping. This method was tested three times, each
with the same outcome. As observed in Figure 1.13, there was an immediate rise in
pressure at the start of the test, quickly followed by a decline. This decrease in pressure
signals the occurrence of piping. The findings indicate that to successfully penetrate
the soil, the bucket requires a greater driving force than what is achievable with the
slow pumping rate.

Using a fast pumping rate of 6° 7 mm/s for this test setup, the installation was
successful. However, the generated suction pressure was considerably higher than in
tests performed on homogeneous sand. This increased pressure may be attributed
to hydraulic blockage caused by the silt layer at the top of the sample, resulting in
increased penetration resistance for the bucket (see Figure 1.14).
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(i) (ii)

FIGURE 1.12 – Soil profile (i) and (ii) for pumping rate tests in layered soil (TRAN 2005)

FIGURE 1.13 – Piping erosion in slow installation in soil with 10 mm silt layer at the
top (TRAN 2005)

The installation continued with soil profile (ii), where a silt layer of 20 mm thickness
was situated 25°30 mm below the top sand layer (refer to Figure 1.12 (ii)). Initially, a
slow pumping method was examined. As the bucket penetrated the sand layer, the suc-
tion pressure mirrored the results observed during slow installation in homogeneous
sand. However, as the bucket approached the silt layer, a greater force was needed for
penetration. This requirement led to a sudden increase in suction pressure, resulting
in piping failure (see Figure 1.15).

In this setup, the bucket’s penetration using a fast pumping rate was also examined.
Initially, the suction pressure rose linearly until it encountered the silt layer, at which
point a noticeable spike was observed. This spike suggests that more force was requi-
red for the bucket to penetrate through the soil. As illustrated in Figure 1.16, after this
sharp rise in pressure at the end of the silt layer, there was a swift decrease. According
to Tran, this signifies a notable shift in the penetration resistance faced by the bucket.

Additionally, in another study conducted by IBSEN and THILSTED 2010, a numerical
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FIGURE 1.14 – Bucket penetration with diameter of 100 mm and mass of 260 grams in
soil with 10 mm silt layer at the top using fast pumping (TRAN 2005)

FIGURE 1.15 – Piping failure in soil with 20 mm silt layer in the middle using slow
pumping for the bucket with diameter of 100 mm and mass of 260
grams (TRAN 2005)

flow analysis was carried out to investigate the installation of suction buckets in both
homogeneous and layered soils. This analysis aimed to examine the development
of the hydraulic gradient in response to the applied suction and explore the criteria
that lead to the formation of piping channels and liquefaction of the sand inside the
bucket. Based on this research, piping occurs due to the flow of water near the edge
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FIGURE 1.16 – Bucket penetration with 20 mm silt layer in the middle with slow and
fast pumping for the buckets with diameter of 100 mm and mass of 260
grams (TRAN 2005)

and tip of the bucket. The study also highlights that the presence of a silt layer during
installation can assist in preventing piping. This finding differs from the conclusions
drawn in the study by TRAN 2005. This is because water doesn’t easily penetrate this
layer, leading to alterations in the water flow pattern at the wall’s edge. Drawing from
the TRAN 2005’s findings, it is recommended to avoid an excessively slow pumping
rate, as slow pumping can contribute to piping. As mentioned in TRAN 2005, slow
pumping and slow motion of the caisson wall result in insufficient increase in effective
wall cut-off, which does not prevent piping from occurring.
4- Effect of different bucket geometry

In another series, TRAN 2005 investigated the effect of different bucket geometries
during installation. The tests were conducted under two different scenarios: in the
first scenario (i) the bucket diameter was kept constant at 80 mm, while the wall
thickness was adjusted from t/D = 2% (1.6 mm) to t/D = 1% (0.8 mm). The suction
pressures during the installation of the buckets were then compared. It is important
to mention that for both scenarios, the self-weight of the bucket remained the same at
2.6 N. The results in Figure 1.17, indicate that the bucket with a thicker wall required a
slightly higher suction pressure to penetrate through the soil, though this difference
was minimal. This could be attributed to the increased pressure required due to a
larger wall tip area for the thicker bucket. For both thicknesses, the suction pressure
exhibited a linear increase as the bucket penetrated the soil. In Figure 1.17, S1g-80(1.0)-
260-S means a 1g test on a bucket with a diameter of 80 mm and t/D = 1%, and mass
of 260 grams during slow installation. Also in the study conducted by KIM et al. 2019
it was observed that thicker walls make it harder for the bucket to penetrate into the
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ground because they need more pressure to break through the soil.

FIGURE 1.17 – Effect of wall thickness on the suction pressure for slow rate pumping
for two buckets with diameter of 80 mm and mass of 260 grams(TRAN

2005)

In the second scenario (ii), while the wall thickness remained constant, the bucket
diameter was altered from 100 mm to 70 mm. The impact of the varied diameter on the
suction pressure was explored using a slow pumping rate. As observed in Figure 1.18,
the normalized suction pressure displayed no noticeable difference. This might be
attributed to the identical self-weight of the buckets. If the larger bucket were heavier,
it might lead to increased suction pressure.
5- Investigation of internal heave

TRAN 2005 examined the formation of heave inside the bucket during installation
and looked into various factors that could have a direct impact on it. According to
TRAN 2005 the heave inside the bucket is caused by the seepage flow through the sand.
Throughout performed tests, the heave inside the bucket was consistently monitored.
In all installations, a consistent sand heave formation was observed. In the study
conducted by TRAN 2005, further investigations were carried out to determine how
different pumping rates affected heave formation. It was found that in all tests, except
for those with t/D = 2%, faster installation significantly reduced the internal heave.
Additionally, wall thickness appeared to greatly influence heave formation. The effect
of wall thickness was tested at a pumping rate of 0.4 mm/s and a self-weight of 2.6
N across all tests. As depicted in Figure 1.19, a larger heave was noticed inside the
buckets with thicker walls. In Figure 1.19, the heave height is represented as h, and its
ratio with the penetrated wall is calculated as h/L. In Figure 1.19, the test case S1g-70-
260-S represents a 1g test for a bucket with a 70 mm diameter and a mass of 260 g. The
"S" designation indicates a slow installation, whereas in other test cases, "F" denotes
fast installation. In these tests, the bucket with a 70 mm diameter has a thickness of
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FIGURE 1.18 – Effect of bucket diameter on the suction pressure for slow rate pumping
for two buckets with diameter of 100 mm and 70 mm and mass of 260
grams (TRAN 2005)

0.35 mm. In test cases such as S1g-80(1.0)-260-S, "1.0" denotes a thickness equivalent
to 1 percent of the diameter, which corresponds to 8 mm. For shallow penetrations
with L/D ∑ 1, the heave ratio quickly increased with initial penetration but remained
relatively stable during subsequent penetrations. The bucket with t/D = 2% showed a
significantly larger heave than that with t/D = 0.5% (S1g-70-260-S).

If one assumes that all the sand displaced by the wall tip enters the bucket and
that thicker walls displace more sand, the effective sand heave can be calculated by
subtracting the penetrated wall volume from the total heave volume, as shown in
Figure 1.19. Even after this consideration, buckets with thicker walls still produce a
larger effective heave. Moreover, TRAN 2005 explored the effect of adding a surcharge
to the buckets (see Figure 1.20). It was observed that applying external loads to the
buckets (increasing the bucket mass) reduced the heave formation inside.
In another study conducted by RAGNI et al. 2020, it was indicated that the primary
factor leading to plug heave in their experiments is attributed to the volume of soil
displaced by the advancing skirts of the bucket. In contrast, the contribution of sand
dilation, even in dense sand conditions, was found to be minor.

Recent studies have focused on investigating suction bucket installation in sandy
seabeds. A study introducing an experimental methodology for visualizing and quan-
tifying changes in the sandy soil state during suction bucket installation is presented
in RAGNI et al. 2020. Another study examining the effects of suction pressure during
installation, particularly addressing the soil heave phenomenon caused by upward
seepage inside the bucket, can be found in KIM and KIM 2020. Additionally, SHENG

et al. 2024 examined suction bucket installation in layered soils. A study by ZHANG et al.

37



1 State of the art – 1.5 Installation behaviour at normal gravity (1g)

FIGURE 1.19 – The impact of wall thickness on the development of internal heave,
where "S" indicates slow installation for a bucket with diameter of
70 mm and mass of 260 grams and two buckets with diameter of 80
mm and mass of 260 grams ; (1.0) denotes t/D = 1% and (2.0) denotes
t/D = 2% (TRAN 2005)

FIGURE 1.20 – The impact of surcharge on sand internal heave during fast installation
for buckets with diameter of 100 mm and mass of 260, 360, 410, and
460 grams. (TRAN 2005)

2024 investigated bucket foundation installation in sand using different installation
methods from a microscopic perspective.
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1.6 Objectives of this study and thesis outline
As explored in the previous sections, piping may occur due to the seepage flow of
water in the soil near the edges and tip of the bucket. This behavior can vary bet-
ween homogeneous and layered sand. Different layers may have varied penetration
capabilities, which can either facilitate or hinder the occurrence of piping, depending
on the pumping rate. In this study, a set of micromechanical numerical models will
be developed capable of dealing with localized piping erosion and heave formation
in suction-bucket scenarios involving frictional and/or cemented granular soils. To
achieve this, a granular 3D cohesion model will be introduced for the simulation of
cemented sands in a DEM framework, followed by validation using macro traction
tests performed at the University of Aix-Marseille (AMU). Once the model is validated,
it will be integrated in the 3D open-source software called waLBerla from the FAU
University of Erlangen-Nürnberg. This software is utilized for simulations coupling
fluid dynamics using the Lattice Boltzmann method (LBM) with the Discrete element
method (DEM) describing the mechanics of the granular particles. This framework is
efficient, scalable, and optimized for high-performance computing. More information
regarding this framework can be found in BAUER et al. 2021. Some first examples of
bucket simulations in non-cemented and cemented sandy bed using this framework
will be presented and analysed.
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2.1 Solid granular models
Solid granular models, specifically the Discrete Element Method (DEM), are nume-
rical techniques used to model and study the movement and behavior of individual
particles separately, rather than considering them as a continuous medium. The Dis-
crete Element Method was first introduced by CUNDALL and STRACK 1979 and is
derived from molecular dynamics. The DEM model describes the behavior of granular
materials using Newton’s equations of motion. The interactions between individual
particles are governed by contact models. In these contact models, a small penetration
is allowed between particles to calculate their interaction forces. However, according
to LUDING 2008, the interaction force between particles is related to the overlap delta
(±) between them. The contact forces between two individual particles can be modeled
using spring-dashpot systems to account for the contact deformation.

2.1.1 Equation of motion
According to LUDING 2008, the evolution of each particle in terms of position, velocity,
and acceleration can be described by Newton’s equation of motion. All the forces,
denoted as fi , acting on particle i , whether from boundaries or other particles, can be
expressed as follows:

mi

d
2

d t 2 ri = fi +mi g , and Ii

d
2

d t 2¡i = ti (2.1)

In this context, mi denotes the mass of particle i , ri represents its position, Ii stands
for the moment of inertia, and ¡i indicates the angular velocity. The total force acting
on particle i is given by fi =

P
i 6= j fi j + fext, where fi j represents the interaction force

between particles i and j , and fext denotes external forces, such as those arising
from fluid or interactions with boundaries. Also, the total torque is calculated from
ti =

P
c l

c

i
£ f

c

i
+q

c

i
, where q

c

i
are torques resulting from rolling and torsion, and not

from the tangential force, and l
c

i
is the vector connecting the center of the particle

with the contact point.

2.1.2 Normal contact force law
As it can be seen in Figure 2.1, the two particles i , and j are in contact where:

±= (ai +a j ) · (ri ° r j ) ·n, with ±> 0 (2.2)

where ai , j are radii and ri , j are particle positions. In this equation, the contact
normal is represented by n = ni j =

ri°r j

|ri°r j | pointing from j to i at contact point c . Forces
acting on the contact point c can be decomposed into the normal and tangential
forces:

f
c = fnn + ft t (2.3)
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Using the spring dashpot model the normal force, fn can be written as:

fn = kn±+∞n vn , (2.4)

where kn is the spring stiffness, with higher value kn meaning more rigid particles,
and a higher resistance to deformation. The damping coefficient ∞n controls the
dissipation of energy, and vn is the relative velocity between two particles, vn =°(vi °
v j ) ·n in the normal direction, and "." is the dot product also known as scalar product
between two vectors. The damping coefficient adapted from TING and CORKUM 1992

FIGURE 2.1 – Two particles in contact with overlap (LUDING 2008)

can be expressed as:
∞n = 2

p
knmeff∞ (2.5)

where kn is particle stiffness, me f f =
mi m j

mi+m j
is called effective mass, mi , j are the masses

of particles i and j , respectively, and ∞=° ln(e)p
ln(e)·ln(e)+º2

. Here e is the coefficient of

restitution which should be chosen between 0 and 1.

2.1.3 Tangential forces and torques
According to LUDING 2008, for the tangential degree of freedom, three different forces
and torque laws have to be considered: (i) friction, (ii) rolling, and (iii) torsion re-
sistance. To calculate forces and torques relative to sliding and static friction, the
tangential velocity needs to be considered. This velocity is calculated as:

vt = vi j °n(n · vi j ) (2.6)
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where vi j is the relative velocity between particles, and "." is the dot product between
two vectors. The relative velocity of the contact surface, vi j , is calculated as:

vi j = vi ° v j +a
0
i
n £!i +a

0
j
n £! j (2.7)

In this formula, for Æ = i , j (for particle i and j ) a
0
Æ is referred as the corrected

radius and calculated as a
0
Æ = aÆ°±/2 where aÆ is the particle radius and ± is the

overlap between two particles, !Æ is angular velocity, and "£" is the cross product
between two vectors. The tangential forces acting on particles are calculated based
on the accumulated sliding at the contact point. Sliding between two particles occurs
when both rotate with angular velocities in the same direction, perpendicular to the
normal vector (Figure 2.2). Pure rolling happens when two particles rotate anti-parallel
perpendicular to the normal vector (Figure 2.3). According to LUDING 2008 rolling
velocity can be precisely determined by employing the following equation:

vr =°a
0
i j

(n £!i °n £! j ) (2.8)

where a
0
i j

is the effective corrected radius calculated as a
0
i j
=

a
0
i
a
0
j

a
0
i
+a

0
j

.

This velocity activates torques on particles working against rolling motion, q
r ol l i ng

i
=

°q
r ol l i ng

j
= ai j (n £ fr ) which contains the cross product of the normal vector n with

rolling force fr calculated in analogy to the tangential force. The calculation of this
force will be explained later.

FIGURE 2.2 – Pure sliding (WANG et al. 2015)

In order to calculate the torsion on both particles (see Figure 2.4), it is necessary to
consider the spin along the normal axis. The relative displacement resulting from this
spin can be determined by employing the torsional velocity:

vo = ai j (n ·!i °n ·! j )n, (2.9)

where ai j is the effective radius calculated as ai j =
ai a j

ai+a j
.

The torsion acting on both particles is of equal magnitude and applied in opposite
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FIGURE 2.3 – Pure rolling (WANG et al. 2015)

directions. Furthermore, it can be calculated in a manner similar to the tangential
force, employing the expression: q

tor si on

i
=°q

tor si on

j
= ai j fo .

FIGURE 2.4 – Pure torsion (ŠMILAUER 2010)

2.1.4 Calculating tangential forces
According to LUDING 2008, the tangential forces and torques resulting from (i) friction,
(ii) rolling, and (iii) torsion resistance applied to the particles can be determined ac-
cording to a set of instructions. These instructions utilize the relative velocity between
the two particles, and the resultant output will be used to calculate these forces as a
function of accumulated deformations. When the contact between two particles is
active, their tangential spring from the previous time step needs to be transformed to
the new frame of reference using the following equation:

ªt = ª0
t
°n(n ·ª0

t
), (2.10)

where ªt represents the tangential displacement in the current time step, ª0
t

denotes
the tangential displacement from the previous time step, n signifies the normal vector,
and "." is the dot product between two vectors. If the contact is new the tangential
spring is initialized with the displacement of zero. After bringing the displacement to
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the current frame of reference, the tangential force is determined:

ft =°ktªt °∞t vt , (2.11)

where kt represents the tangential stiffness, ∞t denotes the damping parameter, and
vt signifies the relative sliding velocity obtained from Equation 2.6.

The tangential force, obtained through calculations, is limited to the constraints im-
posed by Coulomb’s friction law, given by | ft |∑µs fn . Here µs is the friction coefficient.
Hence, it can be concluded that:

ft =
(

sg n( ft )µs fn , if | ft |∏µs fn

ft , if | ft | <µs fn

(2.12)

2.1.5 Calculating moments and torsion
The forces associated with rolling and torsion ( fr and fo) are computed in a manner
similar to the tangential forces described in subsection 2.1.4. In the case of rolling
resistance, kr represents the rolling stiffness, ∞r denotes the rolling damping coeffi-
cient, and vr signifies the rolling velocity obtained from Equation 2.8. Similar to the
tangential force ft the rolling force fr can be obtained using :

fr =
(

sg n( fr )µr fn , if | fr |∏µr fn

fr , if | fr | <µr fn

(2.13)

where µr is the rolling friction coefficient. The rolling force fr can be obtained using :

fr =°krªr °∞r vr , (2.14)

where ªr is the current rolling displacement, which, similar to the tangential dis-
placement ªt , is calculated using ªr = ª0

r
°n(n ·ª0

r
), where ª0

r
is the previous rolling

displacement.
Likewise, for torsion, ko represents the torsional stiffness, ∞o represents the damping

coefficient, and vo denotes the torsional velocity calculated from Equation 2.9. Similar
to the rolling force fr the torsion force fo can be obtained using :

fo =
(

sg n( fo)µo fn , if | fo |∏µo fn

fo , if | fo | <µo fn

(2.15)

where µo is the torsional friction coefficient. The torsional force fo can be obtained
using :

fo =°koªo °∞o vo , (2.16)

where ªo is the current torsional displacement, which, similar to the tangential dis-
placement ªt , is calculated using ªo = ª0

o
°n(n ·ª0

o
), where ª0

o
is the previous torsional

displacement. In this study, µr =µo , and the ratio between µr and µs is chosen based
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on LUDING 2008. Additionally, the ratios between stiffnesses and damping coefficients
are selected based on the literature review. These ratios are chosen similarly to the
models described by LUDING 2008.

2.1.6 Integration scheme
In DEM, the size of the time step has a significant impact on the accuracy of the
simulation. A smaller time step allows the numerical method to capture sudden
changes in particle motions. However, in large-scale simulations, these small time
steps can be time-consuming and costly. After detecting the forces applied to each
particle during each time step, the linear and angular velocities and accelerations for
each particle should be updated. In this study, the Velocity Verlet integration scheme,
as presented by HOLM 2013, has been used. The illustration of this model can be seen
in Figure 2.5. This integration scheme can be narrowed down in the following steps:

FIGURE 2.5 – Illustration of the Velocity Verlet method with x representing position, v

velocity, a acceleration, and t the time step (HOLM 2013)

1. Calculate new position using: x(t +¢t ) = x(t )+ v(t )¢t +1/2a(t )¢t
2

2. Calculate intermediate velocity using: v(t +1/2¢t ) = v(t )+1/2a(t )¢t

3. Compute the new acceleration using: a(t +¢t ) = F /m

4. Calculate the new velocity using: v(t +¢t ) = v(t +1/2¢t )+1/2a(t +¢t )¢t

Let x denote the position, v the velocity, a the acceleration, F the force, and m the mass.
For each particle at every time step, the position is first updated. Subsequently, an
intermediate velocity is calculated for the particle. Using the DEM method discussed
in the previous sub-sections, the force F exerted on the particle is determined, leading
to the new acceleration. Finally, the new velocity is computed using this updated
acceleration.
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2.2 Cohesive contact law
The previously described methodology based on the Discrete Element Method (DEM)
has proven to be effective in modeling frictional contacts between particles. However,
the presence of cohesive bonds between particles introduces additional constraints
on their motion. As illustrated in Figure 2.6, when particles are bonded, two points of
cohesion, denoted as Ii and I j , are considered. Initially, during the initial state, these
points overlap (contact point of two particles) due to the particles being in close proxi-
mity. If relative rotations Æi and Æ j appear, they will cause these points to separate.
However, particles cannot move away from each other because of constraints imposed
by the cohesive bond. In this two-dimensional context, it is crucial to calculate both
the normal and tangential displacements of particles.

The normal displacement, denoted as ±n , can be determined using:

±n =
ØØØ°°°!Ci C j

ØØØ° (ri + r j ), (2.17)

where
°°°!
Ci C j represents the vector connecting the center points of the particles (Ci and

C j ), and ri and r j denote the radii of the particles (see Fig 2.6). Based on the sign and
magnitude of the normal displacement, the bond can go under tension (±n > 0) or
compression (±n < 0). Similar to the frictional model, the calculation of the normal
force is performed using Equation 2.4. However, there exists a distinction between
bonded contacts and frictional contacts. In the case of bonded contacts, the normal
force, denoted as fn , is computed even if ±> 0, as the bond can experience tension.

Similarly, the tangential displacement, denoted as ±t , can be calculated using:

±t =
ØØØ°°!Ii I j

ØØØ ·~t , (2.18)

where
°°!
Ii I j represents the vector connecting points Ii and I j (points of cohesion

bond), and~t represents the tangential vector perpendicular to the normal vector
~n =°°°!

Ci C j /
ØØØ°°°!Ci C j

ØØØ. Similar to the frictional model, the calculation of the tangential force
can be performed using Equation 2.11. However, it should be noted that in the case of
bonded particles, the application of Coulomb’s friction law is not considered.

Furthermore, the relative rotation, denoted as Æ, can be computed as:

Æ=Æi °Æ j , (2.19)

where Æi and Æ j represent the respective rotations of particles i and particle j . The
torques and torsion applied to the bonded particles can be calculated in a similar
manner as in the case of the frictional model. This involves utilizing rolling and
torsional displacements and determining the rolling and torsional forces ( fr and fo)
as explained in subsection 2.1.5.
According to RADJAI and DUBOIS 2011, the cohesion of a contact takes into account the
relationship between the displacements (±n ,±t ,Æ) and the contact forces ( fn , ft , M),

48



2 Numerical methods – 2.2 Cohesive contact law

FIGURE 2.6 – Degrees of freedom at the local scale for a 2D contact: (a) local normal
displacement (b) tangential displacement, and (c) rotation (DELENNE

et al. 2004)

where M represents the torque applied to the contact point. This relationship can be
expressed as follows:

( fn , ft , M) =√(±n ,±t ,Æ), (2.20)

Here, √ represents the cohesion law, which defines the dependence of contact forces
on the corresponding displacements. It characterizes the cohesive behavior between
particles.

As the particle interactions progress, there is the possibility for a local failure, resul-
ting in a transition from the cohesive contact law to the frictional contact law. This
transition occurs as the cohesive forces are no longer able to maintain the integrity of
the contact, leading to the bond breakage and emergence of frictional forces between
the particles. The failure of cohesive bonds can occur due to tension, shear, bending,
and later torsion is considered. To account for the combined effect of these forces on
bond failure, the parabolic shape failure criterion, based on the work of DELENNE et al.
2004, is utilized (see Figure 2.7). This criterion considers the combined effect of each
force on the bond failure.

The parabolic shape failure criterion offers a method to determine the bond failure
metric by considering the geometric shape (orientation of the bonds), as well as the
applied forces. It helps to prescribe the bond’s resistance to failure under different
loading conditions. As explained before the bond might break because of tension and
not compression. According to RADJAI and DUBOIS 2011, the failure thresholds of the
bond in compression are significantly higher compared to tension, and it is possible
to set the compression threshold to infinity. The parabolic yield surface was found
to accurately fit the data utilized in numerical models (RADJAI and DUBOIS 2011).
Therefore, the mathematical representation of the yield surface in 2D is given by the
equation:

∑=
µ

ft

f
c

t

∂2

+
µ

M

M c

∂2

+
µ

fn

f
c

n

∂
°1, (2.21)

As long as the criterion fulfills ∑< 0, this indicates the presence of a cohesive bond
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between the considered particles. On the other hand, if ∑∏ 0, the bond between the
two particles is considered broken, and starting from that time step, their interaction
is treated as purely frictional. In this formula, f

c

t
, M

c , and f
c

n
represent the bond

tangential, torque, and normal thresholds, respectively.
In the 3D case, this study takes into account the influence of torsion in the failure

criterion of the bonded particles. In this case, the parabolic hyper surface is used, and
Equation 2.21 can be reformulated as follows:

∑=
µ

ft

f
c

t

∂2

+
µ

Mr

M
c
r

∂2

+
µ

Mo

M
c
o

∂2

+
µ

fn

f
c

n

∂
°1, (2.22)

where Mr , Mo are rolling and torsion moments calculated based on fr and fo (explai-
ned in subsection 2.1.4) and M

c

r
and M

c

o
are rolling and torsion thresholds, respecti-

vely.

FIGURE 2.7 – Failure criterion of parabolic shape (BENSEGHIER et al. 2020)

2.3 Lattice Boltzmann Method (LBM)
As KRÜGER et al. 2017 describe, the Lattice Boltzmann Method (LBM) is a computa-
tional fluid dynamics technique (CFD) widely employed to simulate fluid flows and
model complex fluid behaviors. While the equations of fluid mechanics pose chal-
lenges for general analytical solutions, numerical methods are better suited for solving
cases involving complex boundary conditions. However, implementing and paralle-
lizing numerical schemes for fluid simulations can be difficult and computationally
demanding. Nevertheless, the LBM offers advantages in terms of implementation
and parallelization compared to other fluid mechanics methods, such as finite ele-
ment and finite volume. The numerical scheme for the solution of the Boltzmann
equation can be easily implemented and parallelized, making it an appealing choice
for fluid simulations. Additionally, the Boltzmann equation leads to the equation of
fluid dynamics at the macro-scale ; thus, by obtaining a solution to the Boltzmann
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equation, one can determine a solution to the Navier-Stokes equation. Further details
on this topic can be found in KRÜGER et al. 2017. The basic quantity of LBM are the
discrete velocity distribution functions also known as PDFs (particle distribution func-
tions). These functions fi (x, t ) represent the density of fluid particles with the velocity
ci = (ci x,ci y,ci z) at the position x and time t . The mass density of the fluid which is
simply the sum over all the PDFs can be expressed as:

Ω(x, t ) =
X

i

fi (x, t ), (2.23)

Also the first-order momentum of the fluid can be expressed as:

Ωu(x, t ) =
X

i

ci fi (x, t ), (2.24)

In these equations, the particle distribution functions, denoted as fi (x, t), play
a crucial role. The index i represents the i -th component of the vector containing
the particle distribution functions. ci represents the i -th discrete velocity. There are
several specific lattice structures used in the Lattice Boltzmann Method (LBM) for
simulating fluid flows. Among them, the most commonly used velocity sets for solving
the Navier-Stokes equation are D1Q3, D2Q9, D3Q15, D3Q19, and D3Q27. According
to RETTINGER 2013, the D2Q9 model is commonly employed in 2D simulations, while
the D3Q19 model is frequently used in 3D simulations.

The lattice Boltzmann equation can be defined as follows:

fi (x + ci¢t , t +¢t )° fi (x, t ) =≠i (x, t ), (2.25)

In this equation,≠i signifies the i -th component of the collision factor, which will be
further explained. This equation means that the particle i with particle distribution
function fi (x, t ) moves with the velocity ci to the neighboring cell at x +ci¢t (Figure
2.8). Also it can be seen that the particles are also affected by the collision operator
≠i which resembles the collision between particles, which will be explained in the
following subsection. After selecting the appropriate velocity set (D1Q3, D2Q9, D3Q15,
D3Q19, or D3Q27), the simulation comprises two main stages: (i) the collision step
and (ii) the streaming step. More information regarding different velocity sets can be
found in the next subsection.

2.3.1 Collision step
During this step, the parameter ≠i is evaluated and used to update the particles
distribution functions ( fi ), according to the equation:

f
§

i
(~xi , t ) = fi (~xi , t )+≠i (~xi , t ), (2.26)

where f
§

i
represents the post-collision operator, and~xi is the location of the i -th

lattice cell. The most renowned collision models include BGK, TRT, and MRT, which
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FIGURE 2.8 – The process of moving the particle distribution functions within the
lattice from one lattice node to neighboring nodes (KRÜGER et al. 2017)

will be introduced in the following.

2.3.2 Streaming step
During this step the calculated post-collision operator f

§
i

will be streamed to the
neighboring cells with the velocity ci :

fi (~xi +~ci¢t , t +¢t ) = f
§

i
(~xi , t ), (2.27)

According to RETTINGER 2013, the calculations for both steps can be performed locally
for each lattice cell. They only need to exchange information with neighboring cells,
not globally. This feature makes LBM highly optimal for parallel computing, allowing
each lattice cell to be passed to different nodes to enhance the model’s time efficiency.

2.3.3 Collision operators
2.3.3.1 Bhatnagar-Gross-Krook (BGK) model

The collision operator is utilized to simulate local fluid particle collisions within lattice
cells. Various collision models, denoted as≠, are available. Among these models, the
Bhatnagar-Gross-Krook (BGK) operator represents the simplest approach:

≠i ( f ) =°
fi ° f

eq

i

ø
¢t , (2.28)

This operator relaxes the population toward the equilibrium f
eq

i
with the rate determi-

ned by the relaxation time, ø. The equilibrium distribution function can be determined
as follows:

f
eq

q (x, t ) = wiΩ(x, t )
∑

1+ u · ci

c
2
s

+ (u · ci )2

2c
4
s

° u ·u

2c
2
s

∏
, (2.29)

where cs = c/
p

3 is the speed of sound in the lattice system while c =¢x/¢t is the
lattice speed which depends on the specific lattice model chosen (D2Q9, D3Q19). The
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relationship between relaxation time, ø and the kinematic viscosity ∫ can be expressed
as:

ø= ∫

¢tc
2
s

+ 1
2

, (2.30)

The density Ω, and velocity u can be determined from Equation 2.23 and Equation
2.24, respectively. Also the fluid pressure can be calculated directly:

p = c
2
s
Ω, (2.31)

According to RETTINGER 2013 another important aspect of the LBM method is the
boundary condition such as bounce-back boundary for simulating steady and moving
walls which will be explained briefly in upcoming subsections.

2.3.3.2 Two Relaxation Time (TRT)

According to KRÜGER et al. 2017 , the TRT model proposed by GINZBURG et al. 2008 is
based on the decomposition of the lattice population into symmetric and asymmetric
parts. In this model for the given velocity ci there is an opposite velocity c

ī
= °ci .

Using this notation the distribution functions fi can be written as:

f
+

i
=

fi + f
ī

2
, f

°
i
=

fi ° f
ī

2
,

f
eq+

i
=

f
eq

i
+ f

eq

ī

2
, f

eq°
i

=
f

eq

i
° f

eq

ī

2
,

(2.32)

Thereby, the distribution functions are decomposed in their symmetric and antisym-
metric parts:

f
i
= f

+
i
+ f

°
i

, f
ī
= f

+
i
° f

°
i

,

f
eq

i
= f

eq+
i

+ f
eq°

i
, f

eq

ī
= f

eq+
i

° f
eq°

i
,

(2.33)

Similar to the BGK model, for the TRT model the post-collision operator, f
§

i
, and

distribution function, fi , can be expressed as follows:

f
§

i
= fi °!+¢t ( f

+
i
° f

eq+
i

)°!°¢t ( f
°

i
° f

eq°
i

),

fi (x + ci¢t , t +¢t ) = f
§

i
(x, t ),

(2.34)

where !+ = 1/ø and !° are constants which need to be tuned in order to find a stable
condition of the given simulation (BENSEGHIER 2019). However it can be also determi-
ned from a so-called "magic parameter",§= (1/!+°1/2)(1/!°°1/2). According to
GINZBURG et al. 2008 a value of§= 1/4 results in the most stable simulation. The TRT
collision operator can be expressed as:

≠T RT

i
=°!+( f

+
i

(x, t )° f
eq+

i
(x, t ))°!°( f

°
i

(x, t )° f
eq°

i
(x, t )) (2.35)
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2.3.3.3 Multi-Relaxation Time (MRT)

The Multi-Relaxation Time (MRT) method, as opposed to the conventional LBM me-
thods which use one or two relaxation times to update probability distribution of
particles, introduces separate relaxation times for each moment of the distribution
function. In contrast to the other methods this method uses moment space instead
of applying distribution functions directly. The link between the distribution func-
tions [ f0, f1, ..., f8]T and their moment vector ~m = [¡,e,≤, jx , qx , jy , qy ,Pxx ,Px y ]T , and
invertible transformation matrix M for D2Q9 can be found in Equation 2.36, where ¡
is fluid density, e is the energy, ≤ is related to energy square, jx,y = Ωux,y are x and y

momentum components, Pxx and Px y are diagonal and off-diagonal components of
stress tensor, and qx and qy are x and y components of the energy flux. The relation-
ship between moment vector, ~m, and distribution functions (PDFs) can be expressed
as:

~m = M~f ,

~f = M
°1~m.

(2.36)

This formula in the matrix format can be written as:

m =

2
66666666666664

¡
e

≤
jx

qx

jy

qy

Pxx

Px y

3
77777777777775

, M =

2
66666666666664

1 1 1 1 1 1 1 1 1
°4 °1 °1 °1 °1 2 2 2 2
4 °2 °2 °2 °2 1 1 1 1
0 1 0 °1 0 1 °1 °1 1
0 °2 0 2 0 1 °1 °1 1
0 0 1 0 °1 1 1 °1 °1
0 0 °2 0 2 1 1 °1 °1
0 1 °1 1 °1 0 0 0 0
0 0 0 0 0 1 °1 1 °1

3
77777777777775

, f =

2
66666666666664

f0

f1

f2

f3

f4

f5

f6

f7

f8

3
77777777777775

According to RETTINGER 2013, for the MRT model the collision factor can be described
with collision matrix, S, instead of single relaxation time like BGK:

~≠i =°S(~fi ° ~fi
eq ) (2.37)

In the BGK model the S matrix can be expressed as S = 1/øI where I is the iden-
tity matrix. With the help of Equation 2.36, and because S = M

°1
ŜM the collision

parameter can be re-written as:

~≠i =°M
°1

Ŝ( ~mi ° ~mi
eq ) (2.38)

Also, the Lattice Boltzmann equation with multi-relaxation time can be written as:

f (x + ci¢t , t +¢t )° f (x, t ) =°M
°1

SM [ f (x, t )° f
eq (x, t )]¢t (2.39)

where for D2Q9 S can be written as S = di ag [s1, s2, s3, ..., s8]. In this model s1,2,4 are
constants chosen from the range [0,2], s7,8 = 1/ø where ø is the relaxation time from

54



2 Numerical methods – 2.3 Lattice Boltzmann Method (LBM)

the BGK model, and s0,3,5 are set to zero. More information regarding the MRT model
can be found in KRÜGER et al. 2017.

2.3.4 Velocity sets
In 2D cases for the D2Q9 model the nine velocity parameters ci , as represented in
Figure 2.9, are defined as:

ci =

8
><
>:

(0,0), i = 0

(1,0), (0,1), (°1,0), (0,°1), i = 1,2,3,4

(1,1), (°1,1), (°1,°1), (1,°1), i = 5,6,7,8

Furthermore, the weights in this model are: w0 = 4/9 and the wi = 1/9 for ||wi || = 1
and wi = 1/36 for ||ci || =

p
2.

FIGURE 2.9 – D2Q9 velocity sets (KRÜGER et al. 2017)

The most popular 3D models are D3Q15, D3Q19, and D3Q27 (Figure 2.10). The
velocity sets for these 3D models can be written as:
For D3Q15:

ci =

8
>>>><
>>>>:

(0,0,0), i = 0

(1,0,0), (°1,0,0), (0,1,0), (0,°1,0), i = 1,2,3,4

(0,0,1), (0,0,°1), (1,1,1), (°1,°1,°1), i = 5,6,7,8

(1,1,°1), (°1,°1,1), (1,°1,1), (°1,1,°1), (°1,1,1), (1,°1,°1) i = 9,10,11,12,13,14
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For D3Q19:

ci =

8
>>>><
>>>>:

(0,0,0), i = 0,

(1,0,0), (°1,0,0), (0,1,0), (0,°1,0), (0,0,1), (0,0,°1), i = 1,2,3,4,5,6

(1,1,0), (°1,°1,0), (1,0,1), (°1,0,°1), (0,1,1), (0,°1,°1), i = 7,8,9,10,11,12

(1,°1,0), (°1,1,0), (1,0,°1), (°1,0,1), (0,1,°1), (0,°1,1) i = 13,14,15,16,17,18

For D3Q27:

ci =

8
>>>>>>>>><
>>>>>>>>>:

(0,0,0), i = 0,

(1,0,0), (°1,0,0), (0,1,0), (0,°1,0), (0,0,1), (0,0,°1), i = 1,2,3,4,5,6

(1,1,0), (°1,°1,0), (1,0,1), (°1,0,°1), (0,1,1), (0,°1,°1), i = 7,8,9,10,11,12

(1,°1,0), (°1,1,0), (1,0,°1), (°1,0,1), (0,1,°1), (0,°1,1), i = 13,14,15,16,17,18

(1,1,1), (°1,°1,°1), (1,1,°1), (°1,°1,1), (1,°1,1), (°1,1,°1), i = 19,20,21,22,23,24

(°1,1,1), (1,°1,°1) i = 25,26

FIGURE 2.10 – D3Q15, D3Q19 and D3Q27 velocity sets (KRÜGER et al. 2017)

In the case of D3Q15, the weighting factors are as follows: when |ci | = 0, the weight
wi is 2

9 ; when |ci | = 1, the weight wi is 1
9 ; and when |ci | =

p
3, the weight wi is 1

72 .
For D3Q19, the weight values are: when |ci | = 0, the weight wi is 1

3 ; when |ci | = 1,
the weight wi is 1

18 ; and when |ci | =
p

2, the weight wi is 1
36 .
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Lastly, for D3Q27, the weighting factors read: when |ci | = 0, the weight wi is 8
27 ;

when |ci | = 1, the weight wi is 2
27 ; when |ci | =

p
2, the weight wi is 1

54 ; and when
|ci | =

p
3, the weight wi is 1

216 . The different weighting factors for 3D Lattice models
can be also found in Table 2.1.

TABLE 2.1 – Weighting factors for different Lattice models
Lattice Models (D3Q) Magnitude (|ci |) Weight (wi )

15
0 2/9
1 1/9p
3 1/72

19
0 1/3
1 1/18p
2 1/36

27

0 8/27
1 2/27p
2 1/54p
3 1/216

2.3.5 Boundary conditions
2.3.5.1 Bounce Back

According to MOHAMAD 2011, the bounce-back boundary condition is used for both
stationary and moving walls. With this method, particles approaching the solid boun-
dary are bounced back into the flow domain, as illustrated in Figure 2.11. This figure
depicts the halfway bounce-back boundary condition, where the boundary wall is
assumed to be situated between the solid nodes and the fluid nodes in the lattice grid.
The distribution functions f7, f4, and f8 are determined from the streaming process.
When they hit the wall, they bounce back into the flow domain, resulting in f5 = f7,
f2 = f4, and f6 = f8. This method ensures conservation of energy and momentum at
the boundary. Detailed discussions on this boundary scheme can be found in KRÜGER

et al. 2017 and MOHAMAD 2011.

2.3.5.2 Velocity boundary condition

The boundary condition with known velocity is commonly used in simulations that
involve inlets with imposed velocities. In Figure 2.12, focusing on the west side, the
streaming distribution functions f2,3,4,6,7 are known and have been streamed to the
boundary. The distribution functions f1,5,8 now need to be calculated. For calculating
the unknown distribution functions, the Equation 2.23 and 2.24 are used with the
equilibrium condition at the boundary, for example : f1 ° f

eq

1 = f3 ° f
eq

3 . A more
detailed and comprehensive explanation of the calculation of unknown distribution
functions can be found in MOHAMAD 2011.
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FIGURE 2.11 – Bounce back scheme (MOHAMAD 2011)

FIGURE 2.12 – Velocity boundary scheme (MOHAMAD 2011)

2.3.5.3 Periodic boundary condition

According to KRÜGER et al. 2017, the aim of the periodic boundary condition is to
isolate the repeating flow pattern within a cyclic flow system. This condition is relevant
only when the flow is periodic, implying that a flow exiting the domain on one side will
re-enter from the opposite side. In Figure 2.13, distribution functions departing the
domain from line b will re-enter from line a. This means that the unknown distribution
functions at line b, represented by f2,5,6,b , are equivalent to f2,5,6,a , and the unknown
distribution functions at line a, represented by f4,7,8,a , are equivalent to f4,7,8,b .

2.3.5.4 Pressure difference boundary condition

According to WEINSTEIN and FERNANDES 2020, in the LBM, the pressure is correlated
to the fluid density as expressed by Equation 2.31. The imposed pressure difference in
this method is established using varying densities, ¢Ω, and the distribution functions
f are defined in a manner similar to the velocity boundary condition. It is important
to note that LBM simulations are sensitive to large values of¢Ω in order to avoid shock
propagation into the simulation domain.
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FIGURE 2.13 – Periodic boundary scheme (MOHAMAD 2011)

2.4 Coupling DEM and LBM
According to BENSEGHIER 2019, LBM is highly robust in terms of solid-interaction
coupling. In the previous subsections, the interaction between fluid and stationary
boundaries was introduced. When the simulation domain is considered as a grid, these
boundaries are situated between solid and fluid nodes. It is also crucial to explore how
LBM can manage moving boundaries, such as particles. In this context, two methods
of solid-fluid coupling are presented: (i) the momentum exchange method and (ii) the
partial saturation method (PSM). A shared principle between these methods is the
mapping of solid particles onto the fluid domain (Lattice grid).

2.4.1 The momentum exchange method
According to BENSEGHIER et al. 2020, the microscopic fluid-solid interaction between
LBM and DEM models can be introduced employing a suitable momentum-exchange
algorithm by assuming a regularised non-slip bounce-back boundary condition at
solid nodes proposed by BOUZIDI et al. 2001. This approach is modified for curved
moving boundary conditions featuring a linear interpolation of post-collision fluid
distribution functions using two fluid nodes x f and x f f (see Fig 2.14).

This scheme consideres two possible interpolation situations based on relative
distance q = |x f °x!|/|x f °xs | where x f is the fluid node, xs is the solid node, and x!

is the solid intersection node:

f
ī
(x f , t +¢t ) =

8
<
:

2q f
§

i
(x f , t )+ (1°2q) f

§
i

(x f f , t )+2!iΩ!
c

ī
u!

c
2
s

, for q < 1/2
1

2q
f
§

i
(x f , t )+ (2q°1)

2q
f
§

i
(x f f , t )+ 1

q
!iΩ!

c
ī
u!

c
2
s

, for q ∏ 1/2
(2.40)

where the velocity c
ī

is in opposite direction of ci and u! is the wall velocity at the fluid-
solid intersection point x!. This velocity can be obtained from the particle velocity U ,
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FIGURE 2.14 – Representation of a moving particle where the dashed line represents
the previous position of the particle and fresh fluid nodes appear as
represented by open squares (BENSEGHIER et al. 2020)

particle angular velocity ! and particle center of the mass xc :

u! =U +!£ (x!°xc ) (2.41)

One of the issues of this model is where the solid boundary converts to fluid nodes
with unknown distribution functions. Based on the work of LALLEMAND and LUO

2003, it was proposed that these fresh fluid nodes can have approximate distribution
function of f

eq

i
(Ω,u!) computed using the average fluid density that fluctuates around

1, and the wall velocity at the specified node position just before it (BENSEGHIER et al.
2020). The total force acting on the particle by the fluid can be calculated using:

F =
X
x f

X

i

h
f
§

i
(x f , t )+ f

ī
(x f , t +¢t )

i
ci , (2.42)

Also the total torque acting on the particle from the fluid can be calculated using:

T =
X
x f

X

i

(x!°xc )£
h

f
§

i
(x f , t )+ f

ī
(x f , t +¢t )

i
ci , (2.43)

2.4.2 Partially saturated method (PSM)
Another approach for coupling DEM and LBM is called the Partially saturated method
(PSM) proposed by NOBLE and TORCZYNSKI 1998. This method is based on the local
solid fraction " of each lattice cell. The cell can be fluid if "= 0, solid if "= 1 or partially
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saturated if 0 < "< 1 (see Fig 2.15).

FIGURE 2.15 – Sketch of partial saturated method (BENSEGHIER et al. 2020)

The PSM is based on a modified BGK equation (see Equation 2.25) by introducing
the solid fraction associated with a given lattice node and the presence of solid nodes:

fi (x + ci¢t , t +¢t ) = fi (x, t )+ (1°B)≠BGK

i
+B≠s

i
, (2.44)

where≠s

i
is the collision operator for solid nodes calculated as:

≠s

i
=

h
f

ī
(x, t )° f

eq

ī
(Ω,u)

i
°

h
fi (x, t )° f

eq

i
(Ω,us)

i
(2.45)

Therein u is the local fluid velocity, the velocity of the solid point x is given by us =
up +!£ (x °xc ), and B represents the weighting parameters:

B = "s(ø°1/2)
(1°"s)+ (ø°1/2)

, (2.46)

where "s represents the solid fracture of a lattice node (0 ∑ "s ∑ 1). The force and
torque acting on the boundary can be calculated using:

F = ¢x
2

¢t

X
xn

B(xn)
X

i

≠s

i
(xn)ci , (2.47)

T = ¢x
2

¢t

X
xn

B(xn)(xn °xc )£
X

i

≠s

i
(xn)ci , (2.48)
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where xn is a lattice node which is partially or fully solid ("> 0) and xc is the center of
the mass of the particle. Also, the modified PSM version based on the TRT collision
model can be represented as :

fi (x + ci¢t , t +¢t ) = fi (x, t )+ (1°B)≠T RT

i
+B≠s

i
, (2.49)

2.5 LBM nondimensionalization
According to BENSEGHIER 2019, the key element in working with LBM is using lattice
units instead of other physical units. In LBM, both the space and time steps are equal
to unity in lattice unit, i.e., dx = dt = 1. This implies that when working with SI units
for simulation parameters, these parameters must be converted to LBM units before
being used in an LBM simulation. A detailed explanation of the conversion from
physical units to LBM units and vice versa can be found in KRÜGER et al. 2017. In
lattice space, the space step is denoted as dx , the time step as dt , and Ω0 represents
the fluid density. According to KRÜGER et al. 2017, all physical units can be expressed
as a factor of density qΩ0 , space ql , and time qt . For instance, velocity has the SI unit
of m/s, which means it has ql = 1 and qt =°1. A summary of several variables with
their relevant factors is provided in Table 2.2.

TABLE 2.2 – Illustrating the conversion from physical to dimensionless units
Variables qΩ0 ql qt Factor

Viscosity 1 0 0 Ω0

Length 0 1 0 dx

Time 0 0 1 dt

Velocity 0 1 -1 dx/dt

Kinematic viscosity 0 2 -1 dx
2/dt

Force density 1 1 -2 Ω0dx/dt

Force 1 4 -2 Ω0dx
4/dt

2

Torque 1 5 -2 Ω0dx
5/dt

2

Pressure 1 2 -2 Ω0dx
2/dt

2

Based on the table, to convert a variable from its physical unit to the lattice unit, it
should be divided by the factor listed in Table 2.2. For instance, to convert a velocity
of 20m/s in SI units to the lattice unit, and assuming in SI unit dx = 2£10°4 m, dt =
5 £ 10°5 s, and Ω0 = 1000kg/m3 (which has no contribution in this example), the
velocity in lattice units will be equal to 20/4 = 5.
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3 Numerical model implementation and optimization – 3.1 Introduction

3.1 Introduction
In the previous section, the DEM theory was described in detail. This method is highly
parallelizable because each particle can be examined individually, and its state can be
updated. DEM simulations can be computationally demanding, especially at larger
scales and with more refined sized particles. To achieve a realistic simulation with
thousands or millions of particles, high-performance computing or the power of GPUs
and CPU clusters can be utilized.

In this study, to enhance the potential interaction calculations between granular
materials, the fork-join model, OpenMP in CPU and CPU clusters, and CUDA program-
ming to use the power of Graphical Processing Unit (GPU) have been employed, which
will be explained in this chapter. Additionally, to detect particle interactions, theo-
retically each pair of particles within the domain must be considered as potentially
overlapped. This approach results in a numerical model with O(N

2) time complexity,
where performance is directly related to the square of the input elements’ size (num-
ber of particles in domain) which in large scale simulations can be excessively time
consuming.

This time complexity of the model can be improved by implementing the linked-
cell algorithm within the model, which incorporates meshing into the simulation
and groups particles with potential overlap into the same or neighboring cells. This
grouping can be updated at different intervals. This approach will be explained in
detail, including the algorithms used for implementation in this chapter. All of the
code developments done within this PhD work are provided in a global repository in
GitHub which can be accessed through SANAYEI 2023.

3.2 GPU parallelization
CUDA (Compute Unified Device Architecture) is a platform that grants users access to
the GPU (Graphics Processing Unit) using the C/C++ programming language. Through
this platform, users can use the substantial number of threads available on the gra-
phics card, enabling the parallel execution of code on numerous threads.

According to CHENG et al. 2014, this architecture operates within a heterogeneous
system environment, where both the CPU (Central Processing Unit), referred to as the
host, and the GPU, referred to as the device, can work simultaneously and indepen-
dently. The core concept in this architecture is known as the "kernel". A kernel is a
function initialized from the host (CPU) with specified number of blocks and threads
and each thread will take of part of the computation within the function. Users can
map algorithms to the GPU using kernel functions, and after initializing the kernel,
the CUDA platform manages the algorithm’s execution on the GPU’s threads. Once
the kernel is launched, control returns to the host, which can operate independently.

It is important to know that the host and device possess separate memory spaces.
Data transfer between the host and device is achievable through built-in memory
mapping functions within this platform. In this architecture, the host is responsible for
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executing serialized code, while the device (GPU) handles parallel code. When CPU
intervention is necessary for data residing in GPU memory, data can be transferred
from the device to the host using memory mapping. The CPU can then interact with
the data and subsequently transfer it back to the GPU for the continuation of parallel
algorithms.

The typical and straightforward process for executing a CUDA code is visualized in
Figure 3.1 and described as follows:

• Copying data from the host to the device.

• Initializing the kernel and performing parallel operations.

• Copying the data back from the device to the host.

FIGURE 3.1 – Simple architecture of CUDA programming (CHENG et al. 2014)

Threads inside the GPU can be organized using a two-level hierarchy known as
blocks and grids. Multiple threads can form a block of threads ; however, threads from
different blocks cannot cooperate with each other. Typically, a block of threads can
accommodate a maximum of 1024 threads. Threads within a block can be indexed in
up to three dimensions, denoted as threadIdx.x, threadIdx.y, and threadIdx.z.

If the code execution requires more than 1024 threads, multiple blocks can be
initialized. The collection of created blocks is referred to as grids of blocks, and they
can also be indexed in three dimensions as blockIdx.x, blockIdx.y, and blockIdx.z.

All threads within a grid have access to the GPU global memory. Furthermore, all
threads within the same block have access to the shared memory of that specific block.
It is important to note that different blocks do not have access to the shared memory
of other blocks. For a visual representation of threads and blocks within a grid, it is
referred to Figure 3.2.

In this study, the presented architecture is employed for the generation of particles
within the domain, for both small and large scales. Initially, discrete element parame-
ters, such as Young’s modulus and friction coefficient, are initialized within the host.
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Single block Grid of blocks

FIGURE 3.2 – Illustration of threads and blocks residing inside a grid (CHENG et al.
2014)

Subsequently, these parameters are transferred to the device’s global memory using
a memory allocation function. Following this, the domain’s boundaries, including
interior walls, are initialized within the host and similarly mapped to the GPU’s global
memory.

Inside the host, the initial coordinates and properties of particles are generated
for insertion into the domain. These particles are instantiated as instances of a class
and are collectively stored within a vector. After this initial generation phase, these
particles are copied to an array located in the device’s global memory (GPU only can
use arrays and have no internal vector). In this study, a configuration of 128 threads is
assigned to each block of threads. This number was chosen based on trial and error
for having better performance and time efficiency. Depending on the dimensions of
the simulation domain and the initialized particles, the number of required blocks is
calculated using the following formula in C/C++ syntax:

const int nThreadsPerBlocks = 128;
const int nBlocks = (GRAINS + nThreadsPerBlocks -1)/nThreadsPerBlocks;

More information regarding choosing the number of threads in a block and detecting
the number of blocks for a simulation can be found in CHENG et al. 2014 and STORTI

and YURTOGLU 2015. Furthermore, as discussed in the introduction, the investigation
of potential particle overlap is a crucial aspect of this study. To address this, a linked cell
algorithm is implemented through meshing of the simulation domain and transferring
these data from the host to the device. This algorithm groups particles into specific
cells, a process executed at fixed intervals within the host and subsequently mapped
to the GPU’s global memory.

The interaction between particles and particles and the domain walls is examined
within the device. In the device the properties of particles such as positions, velocities,
and accelerations, are updated accordingly. During the specified time step, these
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properties are synchronized back to the host and recorded for further examinations.
Additionally, the new groupings and indexing established by the linked cell algorithm
are updated based on the particles’ modified positions and are subsequently mapped
back to the device to continue the simulation. The code developed in this study
using C++/CUDA for generating large-scale samples for the macro test, which will be
investigated in the next chapter, is available at SANAYEI 2023.

3.3 Linked cell algorithm
As previously mentioned, one common method for examining particle interactions
within the domain is to assess the potential interactions between each pair of particles
during every simulation time step. This approach results in a time complexity of
approximately O[N (N °1)/2], which is approximately equivalent to O[N

2], where N

represents the number of particles present within the domain. While this method
works well for simulations with a small number of particles, it can become quite
time-consuming as the number of particles within the domain increases.

To address this issue and reduce the time complexity, as suggested by BECKER 2015,
a cutoff radius can be introduced. This radius should be slightly larger than the radius
of the largest particles found within the domain. As it can be seen from Figure 3.3 all
particles located within this cutoff radius, rcutoff, can then be considered as potential
candidates for overlapping, and the rest of the particles inside the domain can be
ignored.

FIGURE 3.3 – Illustration of cutoff radius (ECKHARDT et al. 2013)

As shown in Figure 3.3, the domain is divided into multiple cells, each of which can
be indexed as (cellx, celly, cellz). According to BECKER 2015, to implement the linked
cell algorithm, two arrays need to be initialized: one named HEAD with a size of ncell
(representing the number of cells within the domain), and another named LIST with a
size of natom (or nparticle) equivalent to the number of particles within the domain.
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The HEAD array serves to maintain references to the first particle identified within
each specific cell. By utilizing the LIST index, it becomes possible to point to the
remaining particles contained within that particular cell (see Figure 3.4).

FIGURE 3.4 – Head and List array for detecting all particles residing inside a cell
(BECKER 2015)

The sorting algorithm and creating HEAD and LIST arrays can be implemented in
following three steps:

1. Creation of HEAD and LIST arrays

2. Assigning particles inside HEAD and LIST

3. Updating arrays in each x time steps (generally 50 time steps as suggested by
literature).

These steps can be implemented using the algorithm 1:
In this algorithm mesh_r esol should be chosen slightly larger than the largest

particle found withing the domain, meshx ,meshy ,meshz are the total number of
cells considered in x, y, z directions which can be calculated using this code snippet
in C/C++ syntax:

int mesh_x = floor((x_max - x_min)/mesh_resol) + 1;
int mesh_y = floor((y_max - y_min)/mesh_resol) + 1;
int mesh_z = floor((z_max - z_min)/mesh_resol) + 1;

The HEAD and LIST arrays, which have been generated, facilitate the examination of
potential interactions between particles at each time step. This approach significantly
reduces time complexity from quadratic (O[N

2]) to linear (O[N]). This efficiency is
achieved because only particles within the same cell and its neighboring cells are
considered for investigation, and they are easily accessible through the HEAD and
LIST arrays.

These created arrays are instrumental in implementing the Verlet list (VERLET 1967)
which is a list of neighbouring cells for each particle. The Verlet list algorithm restricts
the investigation of potential interaction between particles within the same cell index
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Algorithm 1 Sorting particles in HEAD and LIST arrays

Require:

mesh_r esol : Mesh resolution
mesh_x : Number of cells in the x-direction
mesh_y : Number of cells in the y-direction
mesh_z : Number of cells in the z-direction
Particle data in vector g

x_mi n, x_max, y_mi n, y_max, z_mi n, z_max : Domain boundaries
0: for i = 0 to size(g )°1 do

0: Calculate cell indices :
0: i x = b(g [i ].x °x_mi n)/mesh_r esolc
0: i y = b(g [i ].y ° y_mi n)/mesh_r esolc
0: i z = b(g [i ].z ° z_mi n)/mesh_r esolc
0: Calculate cell index :
0: ncel l = i x + (i y ·mesh_x)+ (mesh_x ·mesh_y · i z)
0: Update linked list :
0: l i st [i ] = head [ncel l ]
0: head [ncel l ] = i

0: end for=0

and its neighboring cells. The neighboring cells include those one unit to the left and
one unit to the right along each dimension, resulting in a total of 9 cells in 2D and 27
cells in 3D space. The developed algorithm for the Verlet list function can be seen in al-
gorithm 2. In this code, the process begins by calculating the cell index of the investiga-
ted particle (i ). Subsequently, a triple for loop is utilized to explore the 27 neighboring
cells. Within this nested loop, using the Head array, particle ( j ) residing in the same or
a neighbouring cell will be detected and it will be passed to "par ti cles_i nter acti on"
function for further investigations. par ti cles_i nter acti on function calculates the
overlap (±) between these particles i , j and as explained before ±< 0 means that the
particles are interacting with each other.

In this study, the Linked Cell algorithm is employed to generate large-scale samples
using the C++/CUDA code and for the macro traction simulation in C++. The de-
veloped algorithm is available in SANAYEI 2023, specifically within the 03-macro-

traction-fork-join folder. The initial algorithm for particle sorting is located in depen-

dencies/components/sortingParticles.h, while the Verlet list is located in dependen-

cies/components/verletList.h.

3.4 Fork-Join model for CPU parallelization
According to BECKER 2015, with the development of multi-core CPUs, the use of multi-
threading and parallelization to enhance algorithm efficiency has become increasingly
prevalent. In CPU parallelization, one can use both shared and distributed memory
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Algorithm 2 Verlet list algorithm for particle interactions

Require:

Array head containing cell head indices
Array l i st to store linked list information
mesh_r esol : Mesh resolution
mesh_x : Number of cells in the x-direction
mesh_y : Number of cells in the y-direction
mesh_z : Number of cells in the z-direction
Particle data in vector g

x_mi n, x_max, y_mi n, y_max, z_mi n, z_max : Domain boundaries
0: for i = 0 to size(g )°1 do

0: Calculate cell indices :
0: i x = b(g [i ].x °x_mi n)/mesh_r esolc
0: i y = b(g [i ].y ° y_mi n)/mesh_r esolc
0: i z = b(g [i ].z ° z_mi n)/mesh_r esolc
0: for z =°1 to 1 do

0: for y =°1 to 1 do

0: for x =°1 to 1 do

0: Calculate neighbor cell indices :
0: i x_nei g hbour = i x +x

0: i y_nei g hbour = i y + y

0: i z_nei g hbour = i z + z

0: Calculate neighbor cell index :
0: ncel l_nei g hbour = i x_nei g hbour+i y_nei g hbour ·mesh_x+mesh_x ·

mesh_y · i z_nei g hbour

0: Initialize j with head [ncel l_nei g hbour ]
0: while j > i do

0: Calculate particle interactions :
0: par ti cles_i nter acti on(i , j ,d t )
0: Update j with l i st [ j ]
0: end while

0: end for

0: end for

0: end for

0: end for=0

to run multiple threads simultaneously, thereby improving algorithm efficiency. In
a distributed memory architecture, nodes can access their own memory quickly but
have slower access to the memory of other threads (known as non-uniform memory
access or NUMA). In contrast, when using shared memory among threads, all cores
connect to memory banks at the same speed (referred to as uniform memory access
or UMA).

To implement UMA in the developed algorithm, one can utilize the OpenMP li-
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brary. This library removes the need for manual synchronization between threads,
making it particularly suitable for loop parallelization. Within the algorithm, the most
time-intensive task is identifying potential overlaps between particles using nested
loops (Verlet list function). To boost model efficiency, a fork-join model can be em-
ployed to process multiple particles concurrently, and synchronizing the results at
the conclusion. In Figure 3.5, it is evident that a section of the code operates in serial
mode. However, when encountering the nested loops, the fork-join model, using multi-
threading, distributes tasks across multiple threads, subsequently synchronizing the
outcomes with the master thread.

In this study, the macro traction simulation, which will be explained in the next
chapter, is developed in C++ and parallelized using the fork-join algorithm. It is further
optimized with the Linked Cell algorithm. The source code is available in SANAYEI

2023, specifically within the 03-macro-traction-fork-join folder.

FIGURE 3.5 – Fork Join model illustration (BECKER 2015)
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4.1 3D bond model and comparing the results with
Timoshenko Theory

4.1.1 Introduction
In this chapter, the ability of the microscopic bond model to correctly predict the
benchmark situation of a cantilever beam made up of a few bonded particles is tested
first, before turning to the sample scale via a macroscopic tensile test. In the study by
CHEN et al. 2022, the main bond models in DEM are investigated and compared. While
there are various bond models in DEM, these are primarily categorized into: (i) spring
models, and (ii) beam models. In the spring model, the bond is represented by several
parallel uniform springs located at the cross-section of the bond. This model calculates
the forces and moments at the particle’s contact point. Meanwhile, in the beam model,
the bond is visualized as a beam connecting the two particles, and the forces and
moments are calculated at the center of each particle (see Figure 4.1). As explained by
CHEN et al. 2022, both models have their strengths and weaknesses. The performance
of these models was investigated using different test cases. In particular three models
were tested for their capability to predict the behaviour of a slender cantilever beam
consisting of several particles: (i) parallel bond model (PBM), (ii) Euler-Bernoulli beam
bond model (EBBM), and (iii) Timoshenko beam bond model (TBBM). The results
were then compared with the theoretical solutions of the Timoshenko theory. Here,
the reference test case from CHEN et al. 2022 will be simulated and evaluated using the
bond model by DELENNE et al. 2004, see Section 2.2, and the results will be compared
with the theory. The source code for this simulation can be found in SANAYEI 2023 in
01-beam-model-python folder.

FIGURE 4.1 – Spring bond model (left), and beam bond model (right) (CHEN et al.
2022)

4.1.2 Test case description
In the study of CHEN et al. 2022 , the behavior of different bond models (PBM, TBBM,
EBBM) is investigated by modeling a cantilever beam under a point load, as shown
in Figure 4.2. In this test case, several particles are bonded together to form a beam.
The leftmost particle is fixed, preventing both movement and rotation. A point load is
gradually applied to the rightmost particle until an almost linear response from the
system is obtained. It is worth noting that the remaining particles can move and rotate
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freely. As the particles are bonded at both ends, they deform and deflect under the
applied load. This study focuses solely on the reference case, where eleven particles,
connected with zero overlap, undergo loading. Their deflection is then compared with
the Timoshenko theory:

±y =
F x

2

6Eb Ib

(3L0 °x)+ 10F x

9G Ab

(4.1)

Therein F is the applied force, Eb is Young modulus, G is shear modulus, Ab is the
cross section area of the beam, Ib is the second moment of area, and x is the beam
coordinate in x direction. In the 3D model extended from DELENNE et al. 2004, the
bond thresholds parameters must be set to extremely high values to prevent bond
breakage. Furthermore, in the bond model from DELENNE et al. 2004 and the extended
3D model, particles with zero overlap are not considered bonded. To accommodate
this study, modifications were made to the model, so that particles with overlap of
zero are also considered as bonded particles. Note that the radius of the bonds is equal
to the particles radius rb = Rp (Figure 4.3). It should also be mentioned that in this
reference test case all eleven particles have the same geometry. The numerical results
from CHEN et al. 2022 using PFC3D software and their comparison with the theory are
illustrated in Figure 4.4, confirming a good agreement.

FIGURE 4.2 – Simulated cantilever beam using PFC3D (CHEN et al. 2022)

FIGURE 4.3 – (a) Physical model of cantilever beam and (b) bonded particle beam
model (CHEN et al. 2022)
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FIGURE 4.4 – Cantilever beam deflection using bond models and comparison with
beam bond models where TBBM is Timoshenko beam bond model,
EBBM is Euler–Bernoulli beam bond model, PBM is Parallel bond model,
and TB theory is Timoshenko beam theory (CHEN et al. 2022)

4.1.3 Results and discussion
As explained in the previous subsection, to compare the cantilever beam test case
with beam theory, eleven bonded particles adjacent to each other (using extended
3D model from DELENNE et al. 2004) were subjected to a vertical force apllied at the
right end of the beam until an almost linear response from the system is obtained. To
ensure the bonds were stiff, the Young’s modulus was chosen as Eb = 2£108 kN/m2.
The simulation ran for 1 second. The DEM properties and particle geometry are listed
in Table 4.1.

TABLE 4.1 – Simulation parameters for cantilever beam
Parameter Value

Eb 2£108 kN/m2

Ks/Kn 1
∫s/∫n 0.2
µ 0.3
en 0.2
Gravity [0, °9.81, 0] m/s2

Particle radius (R) 0.2 m
Particle density (Ω) 2600 kg/m3

Simulation time step (¢t ) 1£10°5 s
Total time steps 100000

In this table, the parameter Ks

Kn
represents the ratio between tangential and normal

stiffness. The value of Kn is determined using the formula Eb £ Ab

Lb

(CHEN et al. 2022),

where Ab is the bond area, calculated with the formula ºR
2, and Lb symbolizes the
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distance between the centers of two bonded particles. The restitution coefficient, en is
utilized for calculation of damping between particles using Equation 2.5.

After the linear response from the system is reached, the deflection of the particles
was analysed. Figure 4.5 illustrates a comparison between the particle deflection
obtained from the numerical simulation and the predictions from Timoshenko’s
theory. From these results, it is evident that the bond model from DELENNE et al. 2004,
once adjusted to model 3D bonds, can reproduce the theoretical results from the
models examined in CHEN et al. 2022. According to the theory, the beam maximum
deflection should be 8.4890 mm, while the deflection recorded from the last particle
was 8.4825 mm, corresponding to an error of 0.42%.

In subsequent steps, the extended bond model will be subjected to the more chal-
lenging case of macro traction tests.

FIGURE 4.5 – Cantilever beam deflection using extended 3D model from DELENNE

et al. 2004 and comparison with theory

4.2 Macro traction tests

4.2.1 Introduction
In this section, the existing experimental results and the process used for validating
the developed bond model are presented. Next, detailed explanations of the nume-
rical simulations created for these experiments are provided and the numerical and
experimental results are compared.

As part of the bilateral COMET project (France-Germany), the present contribution
thesis is complemented by a thesis with a strong experimental emphasis, hosted by
the Aix Marseille University (RECOVER unit). A series of micro and macro tests were
conducted by the PhD student Abbas Farhat using artificial soils made of silicate
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glass beads with commercial paraffin as a binder. The procedures and results of the
micro tests will be discussed in upcoming subsections. These micro test results will
be used to calibrate the initial parameters of the numerical model. Next, the process
and results for the macro cone tension tests conducted on three different sample sizes
will be described. The numerical simulations developed for these test cases will be
presented, and their outcomes will be compared with the experimental data. More
information about these experiments can be found in FARHAT et al. 2021, FARHAT

2023, and BRUNIER-COULIN 2016. The first numerical model developed for these test
setups and its results are available in SANAYEI et al. 2021.

4.2.2 Materials used in experiments
According to FARHAT 2023, artificial soils composed of glass beads were used in these
experiments as a substitute for natural geo-materials (Figure 4.6). The use of glass
beads provided better control over particle properties, including size, shape, rough-
ness, and density.

The glass beads used in the experiments were spherical and were made of either
silicate glass or borosilicate glass. The densities of these glasses were respectively Ω =
2230kg/m3 and Ω = 2650kg/m3. The silicate beads had diameters d = 0.60±0.13mm,
d = 1.40±0.15mm, d = 3.0±0.30mm, and d = 4.0±0.30mm, whereas the borosilicate
beads were d = 5.0±0.20mm and d = 7.0±0.30mm in diameter. The typical Young’s
modulus for these beads is estimated to be E º 70GPa.

FIGURE 4.6 – Spherical glass beads with diameters 3 mm and 4 mm (FARHAT 2020)

Commercial paraffin, with a solid density of 880kg/m3 and a Young’s modulus of
approximately 200MPa, is used to bond the particles together as a liquid before harde-
ning (Figure 4.7). It is important to mention that the volume reduction of paraffin after
cooling is estimated to be less than 10 percent. The marked difference in the Young’s
modulus between the glass beads and the paraffin suggests that the deformation of
the samples under tensile forces will predominantly arise from the deformation of the
paraffin rather than the beads themselves.
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FIGURE 4.7 – Commercial paraffin used as binder between particles (FARHAT 2023)

4.2.3 Macro tensile tests setup
The macro traction experiments were initially introduced in the work of BRUNIER-
COULIN 2016, using a straightforward setup and basic devices. An updated version of
these tests was later conducted by FARHAT 2023 in his work.

In Brunier-Coulin’s research, as depicted in Figure 4.8, two overlapping conical
shapes, meeting at their narrowest horizontal plane, were utilized. These cones were
filled with a combination of beads and liquid paraffin. After the samples solidified,
a tensile force was exerted on the upper conical shape via a cable and two pulleys
while progressively filling a water container, as shown in Figure 4.8. The lower cone
remained firmly anchored to the support, and it could not move. When the tensile
force caused the two cones to separate, water pouring was halted, and the maximum
force was calculated based on the water’s weight in the container. Following this, the
critical stress around the separation region was computed by dividing the obtained
force by the rupture area (the area surrounding the sample’s neck).

FIGURE 4.8 – Macro tensile test setup by BRUNIER-COULIN 2016

The mentioned device required prior calibration and delicate adjustments ; however,
its precision was limited. In the study conducted by FARHAT 2023, several modifica-
tions were implemented on this testing setup. As illustrated in Figure 4.9, a spring
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with a stiffness of 9.52N/mm is connected to the upper cone, with one end attached
to a force sensor. The upper part of the spring can be elevated at a constant rate over
time using a load press and computer software. The force applied to the upper cone
is recorded by the sensor. The force applied to the sample, due to the elongation of
the spring, increases linearly until a sudden drop in recorded force occurs due to the
separation between the lower and upper cones. By utilizing the calculated force from
the spring, the ultimate stress around the neck of the sample can be determined using
the subsequent equation:

æt =
Ft

A
= Ft

º
4 D2 , (4.2)

Here, Ft represents the spring force recorded by the force sensor and reduced by
the upper cone weight, and A denotes the area around the neck of the model with
a diameter of D. In this test setup, the spring’s elongation rate is maintained at a
constant value between 0.1mm/min and 0.3mm/min.

FIGURE 4.9 – Updated macro tensile test setup (FARHAT 2023)

Another enhancement introduced by FARHAT 2023 to the traction test setup was the
ability to utilize cones of varying sizes. In his study, three distinct conical sizes—small,
medium, and large—were employed. The properties of these cones are depicted in
Figure 4.10.

4.2.4 Micro tests setup
In this study, the results from micro-tests conducted by FARHAT 2023 served for the
calibration of initial values for the subsequently developed numerical model, which
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FIGURE 4.10 – Three differently sized conical devices for tensile traction tests (FARHAT

2023)

will be explained in the following subsections. In Farhat’s research, after executing
macro traction tests, samples sourced from various sections of the cones were selected
and subjected to micro traction, shear, moment, and torsion tests. Figure 4.11 shows
the test setup designed for the micro traction test on a sample consisting of a pair
of bonded particles. The bottom particle is anchored to a wooden surface, while
the top particle is situated between bulldog tweezers. These tweezers are linked to a
gentle spring with a stiffness of 0.027N/mm for particles with diameters of 4mm or
smaller, and 0.31N/mm for particles of larger dimensions. An inverted scale is further
employed to measure the ultimate force exerted on the particles.

FIGURE 4.11 – Micro traction test setup (FARHAT 2020)

To start the test, the wooden bench below is steadily lowered at a uniform rate until
the bond between the particles is separated. The inverted scale is connected to a
computer, registering both the displacement and the force applied to the particles. A
sharp drop in the recorded force (Figure 4.12) signifies the bond failure between the
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two particles. It is worth noting that these micro tests proceed at a slow pace and are
quite time-consuming.

FIGURE 4.12 – Example for the time evolution of force in the micro traction tests
(FARHAT 2020)

For different loading types such as shear, bending, and torsion, as illustrated in
Figure 4.13, several modifications are made to the previously described setup. The
shear setup has a strong resemblance to the traction setup but with a significant
difference: the pair of particles is oriented perpendicular to the tweezers. One particle
is anchored to the wooden surface, while the other is held between the tweezers,
which are connected to both a soft spring and a scale. The surface is then raised
until the bond between the particles breaks. To conduct bending and torsion tests, as
shown in Figure 4.14, a wooden rod is firmly affixed to one of the particles. This rod is
subsequently positioned between the tweezers.

4.2.5 Macro test results
As explained before, a series of traction tests were conducted on multiple samples
of three different sizes: small, medium, and large. These tests involved samples of
varying levels of paraffin content, namely 0.2%, 0.5%, 0.7%, and 1%. The ultimate
traction force required for cones separation was measured using a force sensor, and
the ultimate stress was subsequently calculated using Equation 4.2.

The comprehensive results of the macro tensile tests, including the ultimate traction
force (recorded spring force minus the weight of the upper cone) and corresponding
ultimate stress values for each paraffin content, are presented in Table 4.2.

As it can be seen from Table 4.2, a significant number of tests were conducted using
1% paraffin content, particularly with small and medium samples. Focusing on the
results for small samples with 1% paraffin content, it can be observed from Figure
4.15 that the ultimate force varies between 22.2 N and 36.97 N. The mean value for
the ultimate force in this configuration is determined to be 29.10 N, with a standard
deviation of 6.62 N.
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FIGURE 4.13 – The micro test setup for : (a) shear, (b) bending, and (c1 & c2) torsion
(FARHAT 2023)

FIGURE 4.14 – Wooden rod glued to a pair of particles for performing micro bending
and torsion tests (FARHAT 2023)

Furthermore, considering the results obtained for the medium cone with a paraffin
content of 1%, it can be observed that the average force is 72.3 N, with a standard
deviation of 25.1 N. These findings indicate a significant dispersion in the recorded
ultimate force values. Moreover, referring to the table, it is worth noting that the
ultimate force for the small cone with a paraffin content of 0.7% is 47.5 N. This value
exceeds the maximum force recorded for small samples with a paraffin content of 1%,
suggesting that it may be an outlier.

For each sample size and paraffin content the average ultimate force and average
ultimate stress can be seen in Figure 4.16.

From these plots, it can be observed that in the case of the small samples with a
paraffin content of 0.7% exhibit the highest ultimate force. In the case of the medium
cone, the average force and stress values for both 0.7% and 1% paraffin content are
quite similar. It should be mentioned that only a single sample went under the traction
test for the 0.7 % content, while the ultimate results for the 1% samples displayed
considerable dispersion.
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TABLE 4.2 – Macro traction test results for different sample sizes and paraffin percen-
tages

Cone Size Paraffin % Ultimate Force (N) Ultimate Stress (kPa)

Small 0.2% 1.71 2.42
Small 0.2% 4.09 1.66
Small 0.5% 23.75 33.61
Small 0.5% 26.20 37.08
Small 0.7% 47.50 67.23
Small 1% 22.90 32.41
Small 1% 34.34 48.60
Small 1% 36.97 52.32
Small 1% 22.20 31.42

Medium 0.2% 8.24 3.34
Medium 0.5% 46.20 18.76
Medium 0.7% 73.96 30.04
Medium 1% 49.32 20.03
Medium 1% 50.29 20.42
Medium 1% 110.44 44.86
Medium 1% 79.10 32.13

Large 0.2% 69.43 14.17
Large 0.5% 190.68 38.92
Large 0.7% 256.78 52.41
Large 1% 253.79 51.80

FIGURE 4.15 – Histogram for small and medium samples with 1% paraffin content
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FIGURE 4.16 – The average ultimate force and average ultimate stress for each sample
size with different paraffin content

Furthermore, it can be understood that the paraffin content alone does not solely
determine the anticipated ultimate force. Other factors such as the compactness
of the sample, the geometry and shape of sample settlement around the neck and
coordination number, and other environmental factors could significantly influence
the ultimate outcome.

In this study, numerical simulations were conducted on small, medium, and large
samples with a paraffin content of 0.5% and 1%. These simulations considered both
dense and loose samples, and the obtained results will be discussed in detail later.

4.2.6 Micro test results
The micro tests for traction, shear, moment (bending), and torsion were conducted
using the experimental setups described in previous subsections. This study investi-
gates the micro test results for two different paraffin content levels: 1% and 0.5%.

For the 1% paraffin content, a total of 20 traction micro tests were performed. As
depicted in Figure 4.17, the results exhibit an average ultimate traction froce of 0.41 N
and a standard deviation of 0.21 N, indicating a dispersed distribution. The maximum
recorded result was 0.89 N, while the minimum was 0.20 N.

Similarly, for shear tests with 1% paraffin content, 10 different tests were carried out.
The results exhibit an average shear force of 0.26 N with a standard deviation of 0.10
N, a maximum value of 0.41 N and a minimum value of 0.14 N.

Furthermore, 10 tests were performed for moment (bending), while 13 tests were
performed for torsion. The average results for bending and torsion moments are
0.000640 Nm and 0.000517 Nm with the standard deviation of 0.000529 Nm and
0.000242 Nm, respectively. The minimum and maximum values for bending moment
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were 0.00006 Nm and 0.00202 Nm, respectively. For torsion, the minimum value
recorded was 0.00017 Nm, and the maximum value was 0.0008 Nm.

FIGURE 4.17 – Micro test results distributions for 1% paraffin content

In the numerical simulation, for 1% paraffin content the average traction result
of 0.41 N is selected as the bond threshold value between particles, denoted as Cn .
According to DENG and CARTER 2000 and after subsequent generalization to any
particle size by BENSEGHIER et al. 2020 the thresholds for moment and shear can be
determined as follows:

Cn =Ø£Cs =
Cm

Æ£dmean
, (4.3)

where Æ is typically assumed to be 0.25 and Ø to be 2.0 in the literature. However,
based on the average shear results obtained from the available experiments, a shear
threshold value of 1/Ø=Cs/Cn = 0.26/0.41 = 0.63 is chosen instead of the commonly
used value of 0.5. Moreover, by considering the average bending and torsion results
and employing Equation 4.3, the constant value for bending moment, denoted as Æ, is
revised to 0.39 instead of the standard value of 0.25. Similarly, for torsion, the constant
value Æ is adjusted to 0.31.

These modifications in the selection of threshold values account for the specific
characteristics observed in the experimental shear, bending and torsion tests, provi-
ding a more accurate representation of the material behavior in the simulations.
Similarly, utilizing the identical experimental setup (see Figure 4.18), twenty micro
traction tests were conducted for the 0.5% paraffin content, yielding an average result
of 0.16 N. Additionally, ten tests were carried out for shear, with an average value of

86



4 Model verification at micro and macro scales – 4.2 Macro traction tests

FIGURE 4.18 – Micro test results distributions for 0.5% paraffin content

0.09 N, resulting in a shear threshold ratio of 1/Ø=Cs/Cn = 0.09/0.16 = 0.56, deviating
from the standard value of 0.5.

Moreover, the average values obtained from the moment and torsion tests were
0.000261 Nm and 0.000478 Nm, respectively. Consequently, the corresponding thre-
shold ratios are Ø= 0.41 for moment and Ø= 0.74 for torsion.

The dispersion of the micro test results for the 0.5 % paraffin content is visually
represented in Figure 4.18, highlighting the variability observed in the experimental
outcomes.

4.2.7 Numerical model for macro traction test
In this study, numerical simulations on three samples with different sizes and paraffin
content of 1% and an average particle diameter of 4 mm (4 ± 0.3 mm) are conducted
(Figure 4.19). The samples are created inside two conical shapes that overlap at their
smaller radii. The properties of the conical shapes used as the boundaries can be
found in Table 4.3. The interaction between particles and conical shaped can be
detriment based on their potential overlap. The overlap between a sphere shape and a
conical shape can be determined based on the work of FAN and WANG 2020 using the
closest distance between a point (center of a sphere) and the cone surface. Initially,
dense samples were generated using the CUDA code, with a low friction coefficient of
0.02. This choice of a low friction coefficient facilitated the creation of more compact
samples. The first set of simulations focused on small-sized samples with over 3000
particles and paraffin content of 1%, utilizing the micro simulation results from Section
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4.2.6 as the initial parameters for cohesive thresholds. Subsequently, different samples
were created with a low friction coefficient to investigate the potential influence of
different particle geometry around the neck of the sample on the ultimate force. In
Table 4.4 the DEM parameters used in sample generation and traction test numerical
simulation are listed.

TABLE 4.3 – Sample boundary properties

Sample Size Small radius (r) big radius (R) height (h)
(cm) (cm) (cm)

Small 3 5 8.1
Medium 5.6 8.5 10.8

Large 7.9 12 15

TABLE 4.4 – Macro traction simulation parameters
Parameter Value

diameter 4.0±0.3mm
E 106 kgm/s2

Verlet update in 10 timestep
Cn°1% 0.41 N
Cn°0.5% 0.16 N

Cs/Cn 0.5
¢t 10°5

g 9.81 m/s2

e 0.2
µs 0.05
µr 0.01
Ks/Kn 0.5
∫s/∫n 0.2
Kr /Kn = Ko/Kn 0.1
Ωs 2650 kg/m3

The stiffness of the particles during interaction was calculated based on ŠMILAUER

and CHAREYRE 2010. According to this documentation, the stiffness Kn can be calcula-
ted as follows:

Kn = 2£E £Reff (4.4)

where effective radius is defined as Reff =
Ri R j

Ri+R j
and E is the Young’s modulus. Fur-

thermore, additional simulations were conducted by introducing higher friction coef-
ficients, resulting in looser samples. This was undertaken to examine the impact of
sample compactness on the ultimate traction force.
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FIGURE 4.19 – Different sized samples for particles with diameter average of 4 mm (4
± 0.3 mm)

After generating the samples, using the fork-join C++ code, the traction simulations
are performed. Initially, during the first time step, particles that have overlap (±< 0)
with each other are identified as bonded particles. Figure 4.20 displays the generated
samples and detected bonds within the small-sized sample. Each bond in this figure
is represented by a tube connecting the centers of two overlapping particles.

After sample generation, the traction simulation involves moving the upper co-
nical shape upward (see Figure 4.20). The displacement of the upper cone in each
simulation time step is determined by calculating the incremental force applied from
a spring. Subsequently, the velocity, acceleration, and displacement of the wall are
calculated based on this force from the spring in each time step. The displacement of
the spring connected to the upper cone is progressively increased in each time step
until the bonds surrounding the neck of the samples undergo traction. In model im-
plementation, an incremental displacement, denoted as Ø, is consistently applied to
the spring connected to the upper cone with each time step. Subsequently, the spring
force exerted on the upper cone, as well as upper cone’s acceleration and velocity, are
updated during each of these steps. The spring displacement can be expressed as:

±sp (t ) = ±sp (t °1)+Ø£¢t (4.5)

where ¢t is the time step which in this study is set to 10°5 seconds. The constant
pulling rate Æ is determined as 1 mm/s, which is significantly higher than the actual
pulling rate observed in the experiments, which is 0.3 mm/min. This increased pulling
rate in the numerical simulation is implemented to reduce computational costs,
particularly for medium and large samples, and the effect of slower pulling rate is not
investigated because of the higher computational costs. Then the spring force is given
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by:
Ft (t ) = K £±sp (t ) (4.6)

where Ft represents the calculated spring force at time step t , and K denotes the
stiffness of the spring. In this study, the spring stiffness is set as the actual value used
in the experiments, which is 9.52 N/mm. Then the acceleration of the upper cone
samples imposed by the spring at time step t is computed as follows:

at =
Ft °Fi °M £ g ° (∫£ vt°1)

M
(4.7)

In this relation, M denotes the mass of the upper cone, g represents the acceleration
due to gravity (9.81 m/s2 ), ∫ is the damping coefficient, and vt°1 denotes the velocity
of the upper cone at time step t °1. Using the calculated acceleration, the current
velocity of the upper cone is determined by:

vt = 0.5£¢t £at + vt°1 (4.8)

This formulation set regarding moving the upper cone upward and imposing spring
force to the upper cone is chosen based on a methodology presented in RADJAI and
DUBOIS 2011 and personal discussion with my adviser, Dr. Pablo Cuéllar.

The increase in spring displacement will persist until the bonds surrounding the
neck of the samples go under traction force, leading to their failure and a sudden drop
in bonds incremental force. As depicted in Figure 4.21, there are bonds surrounding
the neck that have reached an internal force of 0.40 N at failure, which is the traction
threshold determined for the numerical simulation based on the micro experimental
results for 4 mm particles with 1% paraffin content. It should be mentioned that not all
of the bonds around the neck reach the traction force threshold because the extended
3D model from DELENNE et al. 2004 considers the combined effects of traction, shear,
bending and torsion as well. The color red in the image denotes a higher magnitude
of the traction force around the neck compared to the other remaining bonds.

4.2.7.1 Small-sized samples with average diameter of 4 mm (4 ± 0.3 mm)

Three distinct samples with extremely low friction coefficients were created. As explai-
ned before the low friction coefficient leads to more compact and dense samples. Since
the particles were randomly generated within a specified diameter range, 4.0±0.3mm,
the only differing factors among the generated samples were the arrangement and
spacing of particles around the neck of the model (overlapping region of two conical
shapes) and the bond coordination number in that area. The coordination number for
each particle is defined as the count of bonds to which it belongs. These three samples
went under traction simulation with a spring increment of 1 mm/s. Throughout the
traction test, the void ratio of the sample, the average coordination number of the
entire sample, as well as that of individual sections (lower, neck, and upper), were
recorded. Following the separation of the conical shapes, the ultimate force recorded
from the spring (Fspr i ng ) was reduced by the weight of the upper sample (M) in order
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FIGURE 4.20 – (left) Settled particles generated from the CUDA code, (right) cohesive
bonds represented as tubes

FIGURE 4.21 – (left) Separation of the upper and lower cone, (right) bonds around
the neck reach 0.41 N which is the traction threshold based on micro
traction tests

to calculate the ultimate force Ful ti mate . To calculate the ultimate stress (æcr i t i cal ),
the calculated ultimate force was divided by the area of the neck of the sample. In
Figure 4.22, the development of the force from the spring and accumulated internal
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force from the bonds until the separation of the lower cone from the upper cone
is illustrated. As it can be seen from this plot, the ultimate spring force is recorded

FIGURE 4.22 – Development of the tensile force from the spring and internal force
from the bonds during the macro traction test (test No. 1).

as 26.6 N and the accumulated displacement of the sample is 0.4 mm. In this plot
the difference between applied spring force and the internal forces is because the
spring also must bear the weight of the upper cone plus the upper part of the sample.
Furthermore, the presence of minor oscillations within the internal forces is evident.
This phenomenon can be attributed to the negative acceleration of the upper cone
in the simulated scenario, as indicated by Equation 4.7. Additionally, Equation 4.8
highlights the possibility of negative velocity for the upper cone. This negative velocity
results in a downward movement of the upper cone, leading to a reduction in internal
forces. Table 4.5 presents the recorded ultimate force and critical stress of the dense
samples, while Table 4.6 indicates the coordination number evaluated in the different
parts of the samples.

Subsequently, in order to compare the results from the dense samples with more
loose samples, two additional samples with higher friction coefficients (µ= 1) were
generated and subjected to traction simulation. All simulation properties remained
the same except for the friction coefficient. It should be mentioned that, in the traction
simulation, the friction coefficient is also set to µ= 1. However, increasing the friction
coefficient only slightly changed the ultimate void ratio of the generated samples
(see Table 4.5). The ultimate force and stress for these two tests can be observed in
Table 4.5, while the bond coordination number evaluated in the different parts of
the sample is recorded in Table 4.6. Based on these results, it can be concluded that
the average coordination number around the neck influences the ultimate force and
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critical stress of the samples. Dense samples exhibit a higher coordination number
around the neck, and for tests with a coordination number exceeding 6, the spring
force exceeds 26 N. This is attributed to the fact that during the traction test, the
bonds around the neck primarily resist the external traction force from the spring,
and a higher coordination number indicates a greater number of bonded particles
around the neck region, resulting in a higher separation force. However, this effect of
density and coordination numbers remains somewhat limited here, with less than 10%
reduction for the two slightly looser samples. This is probably because the difference
in void ratio is also relatively small, despite the change in friction during preparation.
The five generated samples exhibited an average ultimate spring force of 25 N, which
was slightly lower than the average experimental result of 29.1 N. As mentioned in the
experimental section, the macro traction tests demonstrated high dispersity. In the
experiments, for the small sample with 1% paraffin content, four samples were tested.
The minimum recorded ultimate force was 22.2 N, while the maximum recorded force
was 37 N, with a standard deviation of 6.6 N. Based on these results, and considering
the high dispersity observed in the micro tests, slight adjustments to the cohesion
variables such as thresholds for normal, shear, rolling, and torsion can help align the
numerical results with the experimental ones.

Figure 4.23 depicts the comparison between the numerical simulation results and
the corresponding experimental results listed in Table 4.2. The plot illustrates that
the experimental results exhibit a greater degree of dispersity in comparison to the
numerical results. The average of the experimental results is 29.1 N, while the average
numerical result is 22.14 N. For the experimental results, the maximum value is 36.97
N, the upper quartile is nearly 35 N, the median is approximately 29 N, the lower
quartile is around 23 N, and the minimum value is 22.2 N. For the numerical results,
the maximum recorded force is 23.8 N, the upper quartile is around 23 N, the median
is 22 N, the lower quartile is around 21.5 N, and the minimum recorded force is 21.1
N. Despite the disparity in the experimental results and the difference between the
average values of the numerical and experimental data, there is a reasonably good
overall agreement between the two sets of results.
Through a process of trial and error with variation of several numerical parameters, it
was observed that the normal threshold, Cn , of the bonds has a significant influence on
the ultimate force outcomes. Subsequently, the tangential threshold, Ct , was identified
as the second most influential, followed by the ratio Ks/Kn . By adjusting these para-
meters, one can potentially align simulation results more closely with experimental
findings.

Furthermore, to calibrate model variables, a genetic algorithm can be utilized. This
involves generating different samples with varying inputs (cohesion thesholds and
stiffness ratios) within a specified range and prescribing them into the model. The
ultimate force recorded from the model is then used to create a surrogate model. By
utilizing the surrogate model and a genetic optimizer such as particle swarm optimi-
zation (PSO), the calibration of the model can be performed. The created surrogate
model enables global sensitivity analysis to be conducted on the numerical model,
identifying the parameters that have the highest impact on the ultimate force, as well
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as those with negligible contributions. The use of genetic algorithms in geotechnical
problems has been successfully demonstrated in both research and industry. Further
information on utilizing genetic algorithms for geomechanical parameters can be
found in ZHAO et al. 2015. Also DEM parameters calibration has been investigated in
the work of CHENG et al. 2019 using Bayesian filtering framework.

The bond breaking mode was examined in this study, and it can be concluded that
in all of the five samples, the majority of bond failures occurred due to the traction
force surpassing the bond threshold for the normal force. Subsequently, the main
cause of bond breakage was the tangential force. None of the bond failures in these
samples were attributed to bending or rolling, suggesting that these factors do not play
a significant role in this particular test setup. In Figure 4.24, it is evident that in test
case No. 1, 84.7% of the bond failures can be attributed to traction failure, while 15.3%
are a result of tangential failure, and no broken bonds in this figure can be attributed
to rolling or torsion failure.

FIGURE 4.23 – Comparison of experimental and numerical results for small-sized
sample with 4 mm particles and 1% paraffin content

4.2.7.2 Medium-sized samples with average diameter of 4 mm (4 ± 0.3 mm)

In a next step, several medium sized samples were generated with a friction coefficient
of 0.002 and average particle diameter of 4 mm. The choice of this friction coefficient
was made to ensure the creation of dense samples. Subsequently, traction simulations
were conducted using the fork-join model, for 1%, 0.7 % and 0.5% paraffin content.

In the small samples, the number of bonds created throughout the model was
found to be on average 10,035, with 137 of these bonds forming in the neck region.
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FIGURE 4.24 – Comparison of percentage of different bond breakage modes for nu-
merical simulation of small-sized sample (test No. 1)

TABLE 4.5 – Small-sized sample macro traction simulation results

Test Name Paraffin Mass Friction Void ratio Fspring Fultimate Ultimate stress
(%) (kg) (-) (-) (N) (N) (kN/m2)

Test 1 1% 0.2973 0.002 0.557 26.6 23.8 33.6
Test 2 1% 0.2979 0.002 0.552 24.0 21.1 29.8
Test 3 1% 0.2953 0.002 0.551 26.1 23.2 32.8
Test 4 1% 0.2965 1.0 0.569 24.0 21.1 29.8
Test 5 1% 0.2967 1.0 0.566 24.4 21.5 30.4

TABLE 4.6 – Coordination numbers for generate small-sized samples

Test Name Lower CN Neck CN Upper CN Sample CN

Test 1 5.96 6.28 5.68 5.61
Test 2 5.96 5.85 5.65 5.59
Test 3 5.93 6.12 5.63 5.57
Test 4 5.91 5.59 5.63 5.55
Test 5 5.92 5.71 5.63 5.54

Similarly, in the medium sized sample, on average, a total of 42,486 cohesive bonds
were detected across the entire sample, with 610 of them occurring around the neck
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area. This increase in the number of bonds resulted in a higher computational cost,
even when employing a pulling rate of 1 mm/s. The simulations were executed on a
CPU cluster equipped with more than 20 cores and took over six hours to complete.

A medium-sized sample is illustrated in Figure 4.25, where the tube shapes re-
present the detected bonds between particles. The generated sample will undergo
an incremental traction test until the lower cone is completely separated from the
upper section of the sample. First, two simulations were conducted on two different

FIGURE 4.25 – Medium-sized sample traction simulation

medium-sized dense samples, both containing 1% paraffin content. Following that,
three traction simulations were performed on three different dense samples with 0.5%
paraffin content. Lastly, three samples with 0.7% paraffin content were investigated.
For 4 mm particles with 0.7 % paraffin content only the results for micro traction tests
were available and there was no micro test results for shear, bending, and torsion. The
normal threshold for bonded particles with 0.7% paraffin content was set at 0.311 N

(average results for micro traction test). Nonetheless, due to the absence of test results
for shear, bending, and torsion, the threshold ratios established for simulations with
1% paraffin content were considered for these specific simulations. In Table 4.7 and
Table 4.8, the results for these simulations are presented.

In Figure 4.26 the simulation results for the medium-sized samples are plotted,
corresponding to the macro traction tests with 0.5%, 0.7%, and 1% paraffin content,
as presented in Table 4.7. From these results, it is evident that the ultimate force
consistently increases with the bond strength.

In Figure 4.27 comparison has been made between the experimental and simula-
tion results for the medium-sized samples with 1% paraffin content. The findings
indicate that despite having only two simulation data points, the numerical results
exhibit higher values compared to the experimental outcomes. This disparity could
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FIGURE 4.26 – Ranges of all simulation results for the medium-sized sample

be attributed to the uniform treatment of thresholds for all bonds surrounding the
neck in the simulation (in this study the distribution of the bond threshold is not
considered), whereas the experimental data from the micro-scale tests (see Figure
4.17) reveal a dispersion with a standard deviation of 0.21 N and an average value of
0.41 N. Furthermore, only one experimental test was conducted on the medium-sized
samples with 0.7% and 0.5% paraffin content, respectively. For the numerical simula-
tions with 0.5% paraffin content, the average result was 29.3 N, displaying a significant
difference compared to the single experimental test, which yielded an ultimate force
of 46.2 N. Similarly, the average simulation result for 0.7% paraffin content was 95.7 N,
surpassing the outcome of the individual experiment which measured 74.0 N. It seems
that for 1% and 0.7% paraffin content, the simulations overestimate the experimental
ultimate force, while for 0.5% paraffin content, it is the other way around. Furthermore,
in Figure 4.28, the breaking modes for a single test simulation of the medium-sized
sample are depicted. As observed in Figure 4.28, similar to the small cone, the majority
of bond breakages occur due to normal forces, followed by tangential forces. Similar
to the small sample, neither rolling nor torsion contribute to the breakage mode.

4.2.7.3 Large-sized samples with average diameter of 4 mm (4 ± 0.3 mm)

In a last series of simulations, large-sized samples comprising over 40,000 particles are
generated. The particles are released in batches of 2,000 and allowed to settle before
the next batch is released. To achieve a dense sample, a friction coefficient of 0.002 is
employed during the generation process. Due to the considerable time it would take
to perform traction tests on the large sample, approximately one week per test, only a
single simulation is performed.
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FIGURE 4.27 – Comparison of experimental and numerical results for medium-sized
samples with 4 mm particles and 1% paraffin content

FIGURE 4.28 – Comparison of the percentage of the different bond breakage modes
for numerical simulations of medium-sized samples (test No. 1 with
1% paraffin content)

Following the sample generation, it went under traction simulation with a paraffin
content of 0.5% (weaker bond is chosen in order to speed up the simulation). The

98



4 Model verification at micro and macro scales – 4.2 Macro traction tests

TABLE 4.7 – Medium-sized macro traction test results
Test Paraffin Mass Friction Void ratio Fspring Fultimate æ

(%) (kg) (-) (-) (N) (N) (kN/m2)
Test 1 1.0 0.5959 0.002 0.530 133.0 127.15 51.62
Test 2 1.0 0.5902 0.002 0.540 138.9 133.11 54.04
Test 3 0.7 0.5995 0.002 0.530 100.2 94.31 38.29
Test 4 0.7 0.5900 0.002 0.540 102.5 96.71 39.26
Test 5 0.7 0.5900 0.002 0.540 101.8 96.01 38.98
Test 6 0.5 0.5995 0.002 0.530 36.8 30.96 12.56
Test 7 0.5 0.5900 0.002 0.540 31.8 26.01 10.56
Test 8 0.5 0.5900 0.002 0.540 36.7 30.92 12.55

TABLE 4.8 – Coordination numbers for generated medium-sized samples
Test Lower CN Neck CN Upper CN Whole CN

Test 1 6.33 6.11 5.91 5.94
Test 2 6.31 6.05 5.86 5.91
Test 3 6.33 6.06 5.91 5.94
Test 4 6.32 6.10 5.86 5.91
Test 5 6.31 6.05 5.91 5.92
Test 6 6.33 6.06 5.91 5.94
Test 7 6.32 6.10 5.86 5.91
Test 8 6.31 6.05 5.91 5.92

generated large-sized sample is visualized in Figure 4.29 on the left side, while the
detected cohesive bonds are shown on the right side. Notably, during the initial time
step, more than 135,000 cohesive bonds are detected within this sample and almost
300 bonds are located around the neck region.

In Table 4.9, the coordination numbers for the large-sized sample are listed. The
sample was subjected to a traction test using the open-mp C++ code. The ultimate
traction force recorded for this sample was 178.1 N (see Table 4.10), which demons-
trates a notable similarity to the experimental result of 190.7 N. Furthermore, the
breaking modes for this particular test case were also investigated. Similar to the small
and medium-sized samples, the breaking events predominantly occur due to normal
traction force, followed by tangential force. Again, in this sample, none of the bond
breakages were attributed to rolling or torsion action (see Figure 4.30).

TABLE 4.9 – Coordination numbers for generated large-sized sample
Test Lower CN Neck CN Upper CN Whole CN

Test 1 6.62 6.49 6.26 6.29
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FIGURE 4.29 – Large-size sample traction simulation

FIGURE 4.30 – Comparison of percentage of different bond breakage modes for nu-
merical simulation of large-sized samples

4.2.8 Summary and conclusion
From the cantilever beam test results, it can be concluded that the 3D cohesion
model extension from DELENNE et al. 2004 can accurately reproduce beam deflection,
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TABLE 4.10 – Large-sized sample macro traction test result
Test Paraffin Mass Friction Void ratio Fspring Fultimate æ

(%) (kg) (-) (-) (N) (N) (kN/m2)
Test 1 0.5 1.2 0.002 0.540 189.9 178.1 36.33

showing strong agreement with Timoshenko beam theory.
From macro traction test results, it was observed that the void ratio and coordina-

tion number have an impact on the ultimate force results. For samples with a higher
coordination number, especially around the neck — which indicates more bonds in
this region — can withstand some more traction force applied by the spring. Conse-
quently, samples with a greater coordination number around the neck exhibited a
larger ultimate force from the spring. From the simulations of the small-sized samples
it was evident that the ultimate force is smaller for looser samples due to lower coordi-
nation number. However, the observed difference was not more than 10% in ultimate
forces.

Regarding the breakage modes, it was observed that in this particular setup, brea-
kage due to the traction failure of the bonds was dominant, followed by the shear
mode. In none of the examined samples across the three different sizes bond failures
occurred due to bending or torsion. From the results for the small-sized samples, it was
observed that the average numerical results were smaller than the average experimen-
tal results ; however, they had acceptable agreements with each other. From the results
for the medium-sized samples, it was noted that the ultimate force from numerical
simulations exceeded the average of the experimental results. This discrepancy might
arise from considering mono-disperse bonds throughout the sample. As observed in
the micro test results, there was significant variability in the traction test results. In
the future, it might be beneficial to simulate this setup using polydispersed bond thre-
sholds. It might also be advantageous to test an additional cohesion damage model
in this setup. This would entail that, during the test, the bonds affected by the spring
would degrade during the simulation. In a real-world scenario, this could represent
the effect of micro-cracks occurring in the bond. Such damage model was previously
implemented in the 2D Delenne model, as discussed in the work of BENSEGHIER 2019.
For the large-sized sample, the simulation result aligns well with the experimental out-
come. However, only one experimental test was conducted for 0.5% paraffin content,
and there was just one simulation for this content. The agreement between these
results should be validated with additional tests and simulations. Additionally, redu-
cing the pulling rate to align more closely with the experimental procedure might be
advisable. While these simulations might be more time-consuming, it could enhance
result accuracy and mitigate dynamic effects in larger simulations.
Apart from comparison with experimental results, it is also interesting to check whe-
ther a unique ultimate tensile stress value can be obtained in the numerical simula-
tions, irrespective of sample size. Clearly, the values provided by the simulations show
that this is far from being the case. Traction simulations at 1% paraffin content for
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small and medium sample sizes provide values of around 32 kN/m2 and 53 kN/m2,
respectively. Similarly, for 0.5% paraffin content, approximately 12 kN/m2 and 36
kN/m2 was found for the ultimate stress in the medium and large-sized samples. It,
therefore, seems that the ultimate tensile stress increases with sample size, suggesting
significant edge effects in the separation zone between the two cones, that would
require specific investigation.

It was evident from experimental results that the ultimate forces for both micro
and macro tests varied considerably. Although the number of simulations carried out
here is still small, there seems to be comparatively less dispersion in the final values
obtained. Optimizing a model based on such dispersed results will undoubtedly be
challenging. However, leveraging optimization techniques like genetic algorithms or
Bayesian filtering, as mentioned earlier, could be instrumental in aligning numerical
model results more closely with experimental findings.

102



5 Numerical simulations of suction
buckets

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Case study description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Numerical simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Investigating the impact of bucket geometry on uplift phenomena . . . 111
5.6 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

103



5 Numerical simulations of suction buckets – 5.1 Introduction

5.1 Introduction
In this chapter, the developed 3D cohesion model is integrated into the open-source
software waLBerla and coupled with the fluid. According to BAUER et al. 2021, waL-
Berla is a framework that supports complex multiphysics simulations, designed to
harness the full power of supercomputers. This framework operates with massive
parallelism and, when run locally, optimizes the use of available hardware. It em-
ploys a distributed data structure, ensuring that each process holds information only
about local and adjacent data. Consequently, the memory usage of each process is
independent of the overall simulation size, ensuring impressive scalability. For pa-
rallelization, waLBerla leverages both MPI (Message Passing Interface) and OpenMP.
Although its primary focus is on fluid dynamics simulations using LBM, the framework
also includes DEM for particle simulations and a coupled version of LBM and DEM.
Additionally, waLBerla employs adaptive meshing, dynamically refining or coarsening
the mesh based on simulation requirements within specific regions and domains. The
software’s first prototype was developed in 2007 and was released as open source in
2017. Further details about waLBerla can be found in BAUER et al. 2021. The cohesion
model wasn’t previously integrated into waLBerla. This study represents the first effort
to introduce it into the open-source framework. While this is a significant step, there
are some issues and limitations, discussed later, that future research should address
to optimize the performance and capabilities of waLBerla.

5.2 Case study description
In this section, a test case similar to the work of FUKUMOTO et al. 2021 is studied to
evaluate the performance of the coupled DEM-LBM approach with a cohesion model
in scenarios involving the installation of suction buckets. The test also aims to inves-
tigate the occurrence of local piping during the installation process. In Fukumoto’s
study, a coupled 2D fluid and particle simulation approach is used to explore the
occurrence of seepage failure in horizontally oriented ground containing an embed-
ded sheet pile. According to this study, such seepage failures can lead to significant
geotechnical hazards, including the potential collapse of dam structures. The test
setup in this simulation could also be applicable to suction buckets, assuming that
a slice of the bucket wall is simulated. This would allow for the investigation of soil
deformation both inside and outside the bucket, with and without cementation in the
sand, through the pressure difference between the inside and outside of the bucket.

Firstly, the test setup from Fukumoto’s study will be explained. The system examined
in this model, as shown in Figure 5.1, consists of a 2D domain with dimensions
200£100mm (width£height), enclosed by four walls. A fixed sheet pile wall, with
dimensions 65mm£5mm, is positioned in the center of the domain to obstruct water
flow. This wall remains undeformed throughout the simulation. Initially, the domain
is filled only with particles having a density of 2500kg/m3, subjected to gravity, up
to a height of 50mm (with no fluid). The diameter of the particles varied between
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Dmin = 0.5 mm and Dmax = 0.6 mm considering real-life particle sizes. It should be
noted that, in Fukumoto’s work, no cementation or cohesive bonds between particles
were considered. These particle assemblies were generated with three different void
ratios (eini = 0.18, 0.20, and 0.22) to study the impact of increased spacing between
loose particles. The number of particles in these three samples was 38781, 37586,
and 36385, respectively. The friction coefficient between particles was assumed to
be µ= 0.6, and the stiffness ratio between the normal and tangential forces for the
particles was kn/kt = 4, where kn = 5£106. In the next step, these generated samples
were coupled with fluid, filling the entire domain. For the study of FUKUMOTO et al.
2021, a lattice spacing of dx = 5.0£ 10°5 m and a lattice time of dt = 5.0£ 10°7 s
were chosen. The objective of this study was to identify the critical hydraulic gradient
needed to create quicksand near the edge of the wall. To investigate this, fluid flow
was generated by a difference in hydraulic head, as discussed in ZOU and HE 1997. An
inlet was positioned on the upper wall domain at the left side of the sheet pile, and an
outlet was located on the right side. The remaining walls of the domain were subject
to a non-slip boundary condition. A pressure difference (¢P ) was applied through the
inlet and outlet, and the movement of particles adjacent to the wall (10 mm to the left
and right) was monitored. The hydraulic gradient i was calculated as follows:

i = 1
Ω f g

¢P

Ls

, (5.1)

where g = 9.81m/s2 represents the gravitational acceleration, Ω f is fluid density, and
¢P signifies the pressure difference imposed between the inflow and outflow. In this
context, Ls denotes the path length of the seepage flow, which corresponds to the
shortest path around the sheet pile. As illustrated in Figure 5.1, this length measures
35 mm (15 mm + 5 mm + 15 mm). At the beginning of the simulation, the system
was set in a quiescent state with fluid density Ω = 1000kg/m3 and a fluid velocity of
u = 0m/s. Subsequently, a pressure difference of ¢P = 0°1000Pa was imposed over a
duration of 3 seconds.

According to the results, initially, boiling and heaving emerged near the sheet pile
downstream, and after increasing the pressure difference, quicksand emerged within
the corner areas of the wall (Figure 5.2). The evolution of average displacement (uplift)
as a function of the hydraulic gradient is depicted in Figure 5.3 for the three different
samples, each with a distinct void ratio. From these plots, it is evident that quicksand
emerged at the edge of the wall for these samples when i (hydraulic gradient) was
between 1.5 and 2.0 which means the pressure difference ¢P was between 500Pa or
690Pa.

In the current study a 3D test case with general similarity to FUKUMOTO et al. 2021
is chosen for demonstration of the code functionality and for investigation of piping
erosion around the wall-tip of a stationary bucket embedded to a certain depth into
cemented and non-cemented sands. The model detail will be explained in the next
section.
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FIGURE 5.1 – Initial configuration of simulation model for seepage failure around
embedded sheet pile using coupled LBM-DEM model (FUKUMOTO et al.
2021)

FIGURE 5.2 – Seepage failure of horizontal ground with embedded sheet pile
(FUKUMOTO et al. 2021)
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(a) (b)

(c)

FIGURE 5.3 – Evolution of uplift against hydraulic gradient for (a) ei ni = 0.18 (b) ei ni =
0.20, and (c) ei ni = 0.22 (FUKUMOTO et al. 2021)

5.3 Numerical simulation setup
The setup considered in the present study is illustrated in Figure 5.4. All the simula-
tions were run on a personal laptop (MacBook M1 Plus). To facilitate the running of
these simulations on a local computer, several adjustments were necessary. Initially, a
domain of size 80mm£12mm£50mm was chosen, with a rigid box wall in the middle
with dimensions of 80mm£12mm£35mm.

In Fukumoto’s study, the grain sizes were relatively small (Dmin = 0.5mm and
Dmax = 0.6mm). However, creating particles with these diameters in 3D is both time
and memory demanding. Therefore, the diameter of the particles was chosen to be
between Dmin = 1.8 mm and Dmax = 2.2 mm. Particle packing was created solely un-
der the force of gravity, without fluid with submerged (buoyant) density. The stiffness
of the particles during interaction was calculated based on ŠMILAUER and CHAREYRE
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2010. According to this documentation, the stiffness Kn can be calculated as follows:

Kn = 2£E £Reff (5.2)

where effective radius, Reff =
Ri R j

Ri+R j
and E is the Young’s modulus.

One limitation of the current cohesion kernel in waLBerla is that it does not sup-
port a Young’s modulus E > 104 kgm/s2, leading to errors in the LBM kernel. This
issue remains unresolved and must be addressed in future studies. For this study, a
Young’s modulus E = 104 kgm/s2 was selected. The damping ratio between particles is
calculated based on Equation 2.5, as described in previous chapters.

Two samples were generated with different void ratios of eini = 0.64 and eini = 0.67,
comprising 3465 and 3267 particles, respectively. The approach for calculating the
void ratio will be briefly explained in the next subsection. The friction coefficient for
the dense sample is set to µ = 0.5, while for the looser sample, it is µ = 1.0. Upon
generating the samples, the solid-fluid model was initialized. In this study, the lattice
space dx = 2£10°4 m, lattice time dt = 5£10°5 s and fluid density of Ω f = 1000 kg/m3

were chosen. Attempts to refine the lattice space to a smaller value, closer to that in
Fukumoto’s study, resulted in memory deficiencies on the computer used. For the
LBM model the D3Q19 BGK (SRT or single relaxation time) model was used, with a
relaxation time ø= 0.5006 and a kinematic viscosity ∫= 10°5 (RETTINGER and RUEDE

2017). To create a flow within the domain, a difference in hydraulic head between
the inflow and outflow, similar to Fukumoto’s test case, is generated. The rest of the
boundaries within the domain are subject to non-slip conditions. Another limitation
of this test case, compared to real-life studies, is that the bucket remains stationary
and does not penetrate through the sandy bed. Unlike in Fukumoto’s study, where
the pressure difference between the inlet and outlet, ¢P , was varied from 0 to 1000 Pa
over 3 seconds during one simulation, the pressure difference in this study must
remain constant throughout each simulation because applying a dynamic pressure
difference between the inlet and outlet during one simulation was not possible in
waLBerla for the implemented cohesion kernel. To address this, three different values
of ¢P are prescribed for each test case: for the first case, ¢P = 800Pa; for the second,
¢P = 1400Pa ; and for the third, ¢P = 1800Pa. These three values are chosen based on
trial and error with the model.

Each simulation is run until no sudden movements within the particles are detected.
This condition is monitored through the average velocity of the particles throughout
the simulations. After each simulation, the hydraulic gradient i is calculated based on
the pressure difference ¢P , the gravitational constant g = 9.81m/s2, the fluid density
Ω f , and the length Ls = L1 +L2 +L3 (see Figure 5.4). In the case of cohesive sand, a
cohesion threshold of Cn = 0.2N is applied to all detected bonds. All the DEM-LBM
variables used in these simulations are listed in Table 5.1. The rolling and torsion
thresholds are calculated using Equation 4.3 and considering Æ= 0.25.

The numerical simulation for the coupled DEM-LBM is available in SANAYEI 2023,
within the 04-coupled-model-walberla folder. The source code for the cohesion kernel
and its initialization can be found in the src/mesa_pd/kernel/ directory, with filenames
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CohesionInitialization.h and Cohesion.h. The code for sample generation is located in
the apps/showcases/PipingErosion/ directory under the name BedGenerationPipingE-

rosion.cpp, while the coupled simulation can be found in the same directory with the
filename PipingErosion.cpp. For further details regarding waLBerla installation and
setup, please refer to its main page at https: //walberla.net.

TABLE 5.1 – Bucket simulation parameters
Parameter Value

E 104 kgm/s2

µs 0.5
µr 0.1
Ks/Kn 0.5
Kr /Kn = Ko/Kn 0.1
Ωs 2500 kg/m3

Ω f 1000 kg/m3

dx 2£10°4

dt 5£10°5

ø 0.5006
∫ 10°5

DEM sub-cycles 10
Cn 0.2 N
Cs/Cn 0.5

Calculating the average void ratio of the sample
To calculate the void ratio in this sample, the first step is to determine the volume
of the region filled with particles. To do this, the maximum particle height on both
the left and the right sides of the particle packing are identified, denoted as zleft and
zright (see Figure 5.5). The average particle height in the domain is then calculated

using z = zleft+zright

2 . The domain volume Vd is given by Vd = Dx £Dy £ z, where Dx and
D y are 80 mm and 50 mm in this simulation setup. The solid volume (the volume
occupied by particles) is calculated using Vs =

P
i!n

4
3ºr

3
i

, where n is the number of
particles. The void volume can be calculated as Vv =Vd °Vs . Finally, the void ratio can
be determined using eini = Vv

Vs
.

5.4 Results and discussions
In this section, the two generated packing samples with eini = 0.64 and eini = 0.67 are
tested against three different pressures (¢P = 800Pa,¢P = 1400Pa,¢P = 1800Pa), and
the heave inside the bucket is determined at both the beginning and the end of each
simulation. Each simulation is set to run for 10 seconds. However, running this test
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FIGURE 5.4 – Bucket test setup

FIGURE 5.5 – Calculating void ratio

setup for 10 seconds on a local computer takes over 3 days for each test case when
using an M1 chip, according to waLBerla estimators. Interestingly, it takes up to 20
days on an 8-core laptop with a standard chip. To save time, the motion of the particles
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is monitored at fixed intervals during the simulation. The simulation is stopped when
the average velocity of the particles reaches nearly zero and does not change for an
extended period. After each simulation, the hydraulic gradient and heave inside the
bucket are determined. Each generated sample is tested using the parameters listed
in Table 5.1, both with and without activated cohesion.

The results are presented in Figure 5.6. In Figure 5.6 (a), the evolution of uplift inside
the bucket versus the hydraulic gradient for the sample with eini = 0.64 is demonstra-
ted. In this sample, for a hydraulic gradient of 5.06 (corresponding to ¢P = 1800Pa),
piping occurs at the edge of the wall. However, if cohesion is activated, meaning that
overlapping particles are considered bonded during the very first time step, no piping
occurs. For the other sample with eini = 0.67, generated by increasing the friction coef-
ficient from µ= 0.5 to µ= 1.0, piping (quicksand) occurs at a lower gradient i = 3.36,
corresponding to ¢P = 1400Pa (Figure 5.6 (b)). Similar to the previous sample, no
quicksand occurrence was detected when cohesion between particles was activated.
Figure 5.7 shows the shape of the emerging quicksand for the sample with eini = 0.64
at ¢P = 1800Pa. Under the same conditions, cohesion prevented the occurrence of
quicksand in the bucket.

By comparing the results of the two different samples, it can be concluded that
the void ratio and the geometry of the sample near the wall can significantly affect
the occurrence of quicksand. In these samples, it was observed that cemented sand
in the seabed can prevent the occurrence of piping for a given embedment ratio.
However, this should be investigated in greater detail and with a more realistic setup,
such as a moving bucket. This is because cementation can resist wall penetration
through the seabed, and with slow-rate pumping, as observed in the study by TRAN

2005, piping can emerge due to the much higher force required to force the wall
to penetrate the seabed. Remaining issues, such as the correct Young’s modulus,
should be resolved in waLBerla. Moreover, using supercomputers, more refined and
realistically-sized samples must be generated to obtain more reliable results. The
effect of bucket geometry on heave inside the bucket is also investigated in this study
and will be explained in the next section.

5.5 Investigating the impact of bucket geometry on
uplift phenomena

As explained in the state of the art, research by TRAN 2005 suggests that an increase in
bucket thickness leads to a corresponding increase in sand heave within the bucket
(see Section 1.5.3). The study was conducted in a cohesionless sandy bed, examining
bucket thicknesses of 0.8 mm and 1.6 mm. In another work by TRAN 2005, the focus
shifted to variations in bucket diameter while keeping the wall thickness constant.

The current study explored sand heave in buckets with wall thicknesses of 1 mm, 4
mm, and 8 mm (t/D = 1.25%, 5%, 10%) in cohesive sand. The methodology remained
largely the same as in earlier setups. Pressure differences of ¢P = 1800Pa and ¢P =
3200Pa were applied to investigate larger uplift values. A sample with a void ratio
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(a) ei ni = 0.64

(b) ei ni = 0.67

FIGURE 5.6 – Evolution of uplift against hydraulic gradient for (a) ei ni = 0.64 and (b)
ei ni = 0.67

of eini = 0.64 was used for these simulations. Both the internal uplift and hydraulic
gradient were monitored, similar to previous experiments.

The simulations ran on a single computer for 10 seconds simulation time. Given the
computational demands, completing the test could take up to three days on a single
computer. To streamline the process, the average particle velocity was recorded at
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(a) No Cohesion

(b) With Cohesion

FIGURE 5.7 – Comparing the simulations with ¢P = 1800Pa for the sample with eini =
0.64 with and without cohesion

fixed intervals. The simulation was halted when this velocity approached a near-zero
value and remained unchanged for a period.

The outcomes of these simulations are presented in Figure 5.8. The results show
no significant differences between the tested scenarios. At ¢P = 1800Pa, all buckets
displayed minimal internal uplift, although the 8 mm thick bucket showed a marginally
smaller heave. When the pressure difference was elevated to ¢P = 3200Pa, the uplift
increased noticeably across all test cases. Quicksand formation was not observed in
any of the simulations. However, the 8 mm bucket showed a slightly higher uplift,
followed by the 4 mm and then the 1 mm buckets.

Further details on the shape of the uplift across different scenarios can be found
in Figure 5.9. To align more closely with Tran’s work, future simulations could benefit
from allowing bucket penetration through the soil and refining particle sizes with
the help of supercomputers. Additionally, adjustments to the Young’s modulus in the
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current cohesion kernel in waLBerla are necessary to avoid potential inaccuracies.

FIGURE 5.8 – Evolution of uplift against hydraulic gradient across walls of varying
thickness

5.6 Summary and conclusion
In this section, a test case similar to the investigations by FUKUMOTO et al. 2021 on
the seepage effect on sheet piles was used to study piping erosion, and the formation
of uplift (heave) inside suction buckets in both non-cohesive and cohesive sands in
3D. Due to limitations in computing power, several adjustments were made to the
model, such as increasing the average diameter of the particles within the domain.
The current cohesion kernel implemented in waLBerla has some deficiencies, such
as errors when using large and realistic Young’s modulus values in the simulations.
These issues will need to be addressed in future studies.

Based on the current study, it can be concluded that the void ratio has a significant
effect on the formation of quicksand (piping erosion) near the bucket walls. It was
also observed that cohesion within the sand can prevent the formation of quicksand
(piping channels) and failure of the bucket. In scenarios with large pressure differences
between the inside and outside of the bucket, it was observed that buckets with
thinner walls experience less heave. This is important to note because, as seen in the
study by TRAN 2005, jetting techniques may be necessary to mitigate heave and avoid
bucket installation failure. Future studies should allow the bucket to penetrate through
the soil. Although cohesion helps in avoiding piping erosion in this study, slow wall
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movement through the bed (using a small pumping rate) might hinder penetration,
as observed in Tran’s study, leading to the formation of piping channels or significant
heave inside the bucket.
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(a) Wall thickness = 1 mm

(b) Wall thickness = 4 mm

(c) Wall thickness = 8 mm

FIGURE 5.9 – Comparing uplift in a sample with initial void ratio eini = 0.64 across
walls of varying thickness.
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Conclusion
As observed during this study, the extended 3D cohesion model performed accura-
tely in the cantilever beam deflection test and produced realistic results with good
accuracy in the macro traction test. Although the results from the micro and macro
traction experiments were quite dispersed, the developed model of the macro trac-
tion tests was able to reproduce brittle breakage and the separation of cones from
each other. The ultimate forces from the simulations for three different-sized samples
were generally in good agreement with the experimental results, however, there is still
room for improvement in these test case simulations. These improvements could be
achieved by utilizing a damage model or by using poly-disperse bonds, which feature
several bonds with different breakage thresholds throughout the sample. Given the
dispersion of the micro-test results, it may not be advisable to choose average values
for the bond thresholds. Instead, these numbers might be more effectively determined
through calibration and optimization techniques such as genetic algorithms. Addi-
tionally, transferring traction simulation similar to sample generation to the GPU
could improve the model’s time efficiency. This could also allow for a reduction in the
spring’s incremental pulling rate, bringing it closer to real-life rates.

The first version of the coupled DEM-LBM model in waLBerla showed promising
results. However, there are still deficiencies in the suction bucket simulations as well
as in the cohesion kernel within waLBerla. First, the cohesion kernel cannot handle
large Young’s modulus, making it unsuitable for simulating rigid contacts. Second,
compared to previously developed DEM kernels in waLBerla, the cohesion kernel is
relatively slow. These issues suggest that improvements are needed to speed up the
solid-part simulations. In the bucket simulations, it is currently not possible to change
the internal pressure over time ; the pressure remains constant. So, in order to simulate
suction buckets effectively, different simulations with varying pressure differences
must be employed. Additionally, the bucket needs to penetrate through the soil for a
more realistic setup. Addressing these issues and utilizing supercomputers could make
it possible to simulate bucket installations more closely aligned with real-life-sized
test setups and with finer grains.

117





Bibliographie
[1] K. ANDERSEN, J. MURFF, M. RANDOLPH, E. CLUKEY, C. ERBRICH, H. JOSTAD, B.

HANSEN, C. AUBENY, P. SHARMA and C. SUPACHAWAROTE. « Suction anchors for
deepwater applications ». In : Proceedings of the 1st international symposium on

frontiers in offshore geotechnics, ISFOG, Perth. 2005, p. 3-30 (cf. p. 23).

[2] M. BAUER, S. EIBL, C. GODENSCHWAGER, N. KOHL, M. KURON, C. RETTINGER,
F. SCHORNBAUM, C. SCHWARZMEIER, D. THÖNNES, H. KÖSTLER et al. « waLBerla :
A block-structured high-performance framework for multiphysics simulations ».
In : Computers & Mathematics with Applications 81 (2021), p. 478-501 (cf. p. 39,
104).

[3] J. BECKER. « Development and implementation of new simulation possibilities
in the CAST program package ». Thèse de doct. Universität Würzburg, 2015
(cf. p. 67-69, 71).

[4] Z. BENSEGHIER. « Etude numérique de l’érosion d’un matériau granulaire cohésif
par un écoulement fluide ». Thèse de doct. Aix-Marseille, 2019 (cf. p. 19, 53, 59,
62, 101).

[5] Z. BENSEGHIER, P. CUÉLLAR, L.-H. LUU, S. BONELLI and P. PHILIPPE. « A parallel
GPU-based computational framework for the micromechanical analysis of geo-
technical and erosion problems ». In : Computers and Geotechnics 120 (2020),
p. 103404 (cf. p. 50, 59-61, 86).

[6] M. BÖHM, P. SCHAUMANN and E. GHAFOORI. « Shell buckling of suction bu-
ckets for offshore wind turbines considering imperfection and soil parameter
sensitivity ». In : Engineering Structures 302 (2024), p. 117310 (cf. p. 24).

[7] M. BOUZIDI, M. FIRDAOUSS and P. LALLEMAND. « Momentum transfer of a
Boltzmann-lattice fluid with boundaries ». In : Physics of Fluids 13.11 (2001),
p. 3452-3459 (cf. p. 59).

[8] G. A. BROWN and V. A. NACCI. « Performance of hydrostatic anchors in granular
soils ». In : Offshore Technology Conference. OTC. 1971, OTC-1472 (cf. p. 24).

[9] F. BRUNIER-COULIN. « Etude des mécanismes élémentaires de l’érosion d’un sol
cohésif ». Thèse de doct. Aix-Marseille, 2016 (cf. p. 78, 79).

[10] B. BYRNE, G. HOULSBY, C. MARTIN and P. FISH. « Suction caisson foundations for
offshore wind turbines ». In : Wind Engineering 26.3 (2002), p. 145-155 (cf. p. 24).

[11] X. CHEN, D. PENG, J. P. MORRISSEY and J. Y. OOI. « A comparative assessment
and unification of bond models in DEM simulations ». In : Granular Matter 24
(2022), p. 1-20 (cf. p. 74-77).

119



Bibliographie

[12] H. CHENG, T. SHUKU, K. THOENI, P. TEMPONE, S. LUDING and V. MAGNANIMO.
« An iterative Bayesian filtering framework for fast and automated calibration of
DEM models ». In : Computer Methods in Applied Mechanics and Engineering

350 (2019), p. 268-294 (cf. p. 94).

[13] J. CHENG, M. GROSSMAN and T. MCKERCHER. Professional CUDA c programming.
John Wiley & Sons, 2014 (cf. p. 64-66).

[14] P. A. CUNDALL and O. D. STRACK. « A discrete numerical model for granular
assemblies ». In : Géotechnique 29.1 (1979), p. 47-65 (cf. p. 42).

[15] J.-Y. DELENNE, M. S. EL YOUSSOUFI, F. CHERBLANC and J.-C. BÉNET. « Mechanical
behaviour and failure of cohesive granular materials ». In : International Journal

for Numerical and Analytical Methods in Geomechanics 28.15 (2004), p. 1577-
1594 (cf. p. 19, 49, 74-77, 90, 100).

[16] W. DENG and J. CARTER. « Inclined uplift capacity of suction caissons in sand ».
In : Offshore Technology Conference. OTC. 2000, OTC-12196 (cf. p. 24, 86).

[17] W. ECKHARDT, A. HEINECKE, R. BADER, M. BREHM, N. HAMMER, H. HUBER, H.-G.
KLEINHENZ, J. VRABEC, H. HASSE, M. HORSCH et al. « 591 TFLOPS multi-trillion
particles simulation on SuperMUC ». In : Supercomputing : 28th Internatio-

nal Supercomputing Conference, ISC 2013, Leipzig, Germany, June 16-20, 2013.

Proceedings 28. Springer. 2013, p. 1-12 (cf. p. 67).

[18] H. FAN and J. WANG. « Dynamic modeling of sphere, cylinder, cone, and their
assembly ». In : Archives of Computational Methods in Engineering 27 (2020),
p. 725-772 (cf. p. 87).

[19] A. FARHAT. Experimental characterization of the cohesion bonds at Micro and

Macroscopic scales. Technical Report. 2020 (cf. p. 78, 81, 82).

[20] A. FARHAT. « Fluidization and erosion of layered hydraulic earthworks. Expe-
rimental characterization and micromechanical simulation ». Thèse de doct.
Aix-Marseille, 2023 (cf. p. 78-81, 83).

[21] A. FARHAT, L.-H. LUU, P. PHILIPPE and P. CUÉLLAR. « Multi-scale cohesion force
measurements for cemented granular materials ». In : EPJ Web of Conferences.
T. 249. EDP Sciences. 2021, p. 08008 (cf. p. 78).

[22] Y. FUKUMOTO, H. YANG, T. HOSOYAMADA and S. OHTSUKA. « 2-D coupled fluid-
particle numerical analysis of seepage failure of saturated granular soils around
an embedded sheet pile with no macroscopic assumptions ». In : Computers

and Geotechnics 136 (2021), p. 104234 (cf. p. 104-107, 114).

[23] I. GINZBURG, F. VERHAEGHE and D. D’HUMIERES. « Two-relaxation-time lattice
Boltzmann scheme : About parametrization, velocity, pressure and mixed boun-
dary conditions ». In : Communications in Computational Physics 3.2 (2008),
p. 427-478 (cf. p. 53).

[24] J. Z. GONZÁLEZ. « Suction Bucket lid plate design and welding automation ».
Mém. de mast. Aalborg Universitet, Master thesis, 2017 (cf. p. 22, 23).

120



Bibliographie

[25] L. GOODMAN, C. LEE and F. WALKER. « The feasibility of vacuum anchorage in
soil ». In : Geotechnique 1.4 (1961), p. 356-359 (cf. p. 24).

[26] J. HOGERVORST. « Field trails with large diameter suction piles ». In : Offshore

Technology Conference. OTC. 1980, OTC-3817 (cf. p. 25).

[27] C. HOLM. Simulation Methods in Physics 1. 2013. URL : https://www2.icp.uni-
stuttgart.de/~icp/mediawiki/images/5/54/Skript_sim_methods_I.
pdf (cf. p. 47).

[28] L. B. IBSEN and C. THILSTED. « Numerical study of piping limits for suction
installation of offshore skirted foundations and anchors in layered sand ». In :
Frontiers in Offshore Geotechnics, II (2010), p. 421-426 (cf. p. 33).

[29] M. ISKANDER, S. EL-GHARBAWY and R. OLSON. « Performance of suction caissons
in sand and clay ». In : Canadian Geotechnical Journal 39.3 (2002), p. 576-584
(cf. p. 24).

[30] R. KELLY, B. BYRNE, G. HOULSBY and C. MARTIN. « Tensile loading of model
caisson foundations for structures on sand ». In : ISOPE International Ocean

and Polar Engineering Conference. ISOPE. 2004, ISOPE-I (cf. p. 24).

[31] J. H. KIM and D. S. KIM. « Soil plug heave induced by suction bucket installation
on sand via centrifuge model tests ». In : Marine Georesources & Geotechnology

38.10 (2020), p. 1245-1256 (cf. p. 37).

[32] J. H. KIM, S. T. LEE and D. S. KIM. « Observation of sand movement during bucket
installation ». In : International Journal of Physical Modelling in Geotechnics 19.1
(2019), p. 1-14 (cf. p. 31, 35).

[33] T. KRÜGER, H. KUSUMAATMAJA, A. KUZMIN, O. SHARDT, G. SILVA and E. M.
VIGGEN. « The lattice Boltzmann method ». In : Springer International Publishing

10.978-3 (2017), p. 4-15 (cf. p. 50-53, 55-58, 62).

[34] P. LALLEMAND and L.-S. LUO. « Lattice Boltzmann method for moving bounda-
ries ». In : Journal of Computational Physics 184.2 (2003), p. 406-421 (cf. p. 60).

[35] S. LUDING. « Cohesive, frictional powders : contact models for tension ». In :
Granular Matter 10.4 (2008), p. 235-246 (cf. p. 42-45, 47).

[36] Z. MA, D. LIU, B. LIU, Y. ZHANG and K. H. ANDERSEN. « Installation of suction
bucket foundations in layered soils in Southern China ». In : ISOPE International

Ocean and Polar Engineering Conference. ISOPE. 2022, ISOPE-I (cf. p. 24).

[37] F. MACKERETH. « A portable core sampler for lake deposits ». In : Limnology and

oceanography 3.2 (1958), p. 181-191 (cf. p. 23).

[38] A. MOHAMAD. Lattice boltzmann method. T. 70. Springer, 2011 (cf. p. 57-59).

[39] D. R. NOBLE and J. TORCZYNSKI. « A lattice-Boltzmann method for partially
saturated computational cells ». In : International Journal of Modern Physics C

9.08 (1998), p. 1189-1201 (cf. p. 60).

121

https://www2.icp.uni-stuttgart.de/~icp/mediawiki/images/5/54/Skript_sim_methods_I.pdf
https://www2.icp.uni-stuttgart.de/~icp/mediawiki/images/5/54/Skript_sim_methods_I.pdf
https://www2.icp.uni-stuttgart.de/~icp/mediawiki/images/5/54/Skript_sim_methods_I.pdf


Bibliographie

[40] F. RADJAI and F. DUBOIS. Discrete-element modeling of granular materials. Wiley-
Iste, 2011 (cf. p. 48, 49, 90).

[41] R. RAGNI, B. BIENEN, S. STANIER, C. O’LOUGHLIN and M. CASSIDY. « Observa-
tions during suction bucket installation in sand ». In : International Journal of

Physical Modelling in Geotechnics 20.3 (2020), p. 132-149 (cf. p. 22, 24, 25, 37).

[42] C. RETTINGER. « Fluid flow simulations using the lattice Boltzmann method with
multiple relaxation times ». In : Bachelor Thesis, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany (2013) (cf. p. 51-54).

[43] C. RETTINGER and U. RUEDE. « A comparative study of fluid-particle coupling
methods for fully resolved lattice Boltzmann simulations ». In : Computers &

Fluids 154 (2017), p. 74-89 (cf. p. 108).

[44] M. SANAYEI. PhD developments. 2023. URL : https://github.com/atmpluss/
msanayei_phd_developments (cf. p. 20, 64, 67, 69, 71, 74, 108).

[45] M. SANAYEI, A. FARHAT, L.-H. LUU, L. WERNER, C. RETTINGER, P. PHILIPPE

and P. CUELLAR. « Micromechanical framework for a 3D solid cohesion model–
implementation, validation and perspectives ». In : Proceeding-VII International

Conference on Particle-Based Methods PARTICLES 2021. 2021, p. 1-10 (cf. p. 78).

[46] J. SHENG, Y. ZHANG, H. XU, Y. TENG, W. HUANG, H. YAN, B. REN and Y. SU. « Ex-
perience from installation of two suction bucket jacket foundations in layered
soils ». In : Marine Georesources & Geotechnology 42.1 (2024), p. 47-58 (cf. p. 37).

[47] V. ŠMILAUER. « Cohesive particle model using discrete element method on the
Yade platform ». Thèse de doct. Czech Technical University, 2010 (cf. p. 45).

[48] V. ŠMILAUER and B. CHAREYRE. « YADE DEM formulation ». In : YADE Documen-

tation 393 (2010) (cf. p. 88, 107).

[49] SPTOFFSHORE. sptoffshore. URL : https://www.sptoffshore.com (visité le
07/01/2024) (cf. p. 22).

[50] D. STORTI and M. YURTOGLU. CUDA for engineers: An introduction to high-

performance parallel computing. Addison-Wesley Professional, 2015 (cf. p. 66).

[51] J. M. TING and B. T. CORKUM. « Computational laboratory for discrete element
geomechanics ». In : Journal of Computing in Civil Engineering 6.2 (1992), p. 129-
146 (cf. p. 43).

[52] M. N. TRAN, D. W. AIREY and M. F. RANDOLPH. « Study of seepage flow and
sand plug loosening in installation of suction caissons in sand ». In : ISOPE

International Ocean and Polar Engineering Conference. ISOPE. 2005, ISOPE-I
(cf. p. 23).

[53] M. N. TRAN. « Installation of Suction Caissons in Dense Sand and the Influence
of Silt and Cemented Layers ». Thèse de doct. The University of Sydney, 2005
(cf. p. 19, 22-38, 111, 114).

122

https://github.com/atmpluss/msanayei_phd_developments
https://github.com/atmpluss/msanayei_phd_developments
https://www.sptoffshore.com


Bibliographie

[54] L. VERLET. « Computer" experiments" on classical fluids. I. Thermodynamical
properties of Lennard-Jones molecules ». In : Physical review 159.1 (1967), p. 98
(cf. p. 68).

[55] M. WANG, K. DEMARS and V. NACCI. « Breakout capacity of model suction an-
chors in soil ». In : Canadian Geotechnical Journal 14.2 (1977), p. 246-257 (cf.
p. 24).

[56] Y. WANG, F. ALONSO-MARROQUIN, S. XUE and J. XIE. « Revisiting rolling and
sliding in two-dimensional discrete element models ». In : Particuology 18 (2015),
p. 35-41 (cf. p. 44, 45).

[57] B. T. WEINSTEIN and M. C. FERNANDES. Lattice Boltzmann Method. 2020. URL :
https://sites.google.com/site/latticeboltzmannmethodcs205/home/
boundary-conditions (cf. p. 58).

[58] D. WHITE, W. TAKE and M. BOLTON. « Soil deformation measurement using
particle image velocimetry (PIV) and photogrammetry ». In : Geotechnique 53.7
(2003), p. 619-631 (cf. p. 26).

[59] Y. WU, D. LI, Y. ZHANG and F. CHEN. « Determination of maximum penetration
depth of suction caissons in sand ». In : KSCE Journal of Civil Engineering 22
(2018), p. 2776-2783 (cf. p. 25).

[60] Y. WU, Y. ZHANG and D. LI. « Solution to critical suction pressure of penetrating
suction caissons into clay using limit analysis ». In : Applied Ocean Research 101
(2020), p. 102264 (cf. p. 25).

[61] L. ZDRAVKOVIC, D. POTTS and R. JARDINE. « A parametric study of the pull-out
capacity of bucket foundations in soft clay ». In : Géotechnique 51.1 (2001),
p. 55-67 (cf. p. 24).

[62] P. ZHANG, L. MU, Y. LU, M. HUANG and J. SUN. « Microscopic insights into suction
bucket installation in sand : Coupled coarse-grained CFD-DEM simulations ».
In : Computers and Geotechnics 167 (2024), p. 106060 (cf. p. 24, 37).

[63] Y. ZHANG, D. LI and Y. BAI. « Experimental studies on suction-assisted installa-
tion of the modified suction caisson in dense sand ». In : Applied Ocean Research

124 (2022), p. 103221 (cf. p. 25).

[64] C. ZHAO, A. A. LAVASAN, T. BARCIAGA, V. ZAREV, M. DATCHEVA and T. SCHANZ.
« Model validation and calibration via back analysis for mechanized tunnel
simulations–The Western Scheldt tunnel case ». In : Computers and Geotechnics

69 (2015), p. 601-614 (cf. p. 94).

[65] W. ZHOU, Z. GUO, L. WANG, Y. ZHANG and S. RUI. « Numerical model for suction
caisson under axial cyclic loadings ». In : Ocean Engineering 240 (2021), p. 109956
(cf. p. 24).

[66] Q. ZOU and X. HE. « On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model ». In : Physics of Fluids 9.6 (1997), p. 1591-1598 (cf. p. 105).

123

https://sites.google.com/site/latticeboltzmannmethodcs205/home/boundary-conditions
https://sites.google.com/site/latticeboltzmannmethodcs205/home/boundary-conditions




Schriftenreihe des Instituts für Grundbau, Wasserwesen und Verkehrswesen

der Ruhr-Universität Bochum

Herausgeber: H.L. Jessberger

1 (1979) Hans Ludwig Jessberger
Grundbau und Bodenmechanik an der Ruhr-Universität Bochum

2 (1978) Joachim Klein
Nichtlineares Kriechen von künstlich gefrorenem Emschermergel

3 (1979) Heinz-Joachim Gödecke
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