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Preface of the editor

Tunneling in swellable soils or rocks like clay shales may trigger swelling processes, due

to the excavation-induced unloading and wetting by the transport of water or vapor to

the swellable geomaterials. The transport of water from distant aquifers along the tunnel

axis may occur in the so-called excavation damaged zone (EDZ), showing an increased

permeability due to the formation or opening of cracks and dilative shear bands induced

by the excavation. The diffusion of vapor in the direction perpendicular to the tunnel axis

due to a hydraulic gradient is another source of additional humidity potentially evoking

wetting-induced swelling processes. These processes may lead to the development of

swelling pressures under constant-volume conditions and to swelling strains if free swelling

is possible. The development of both swelling pressures and strains is expected under

mixed boundary conditions allowing a certain amount of deformation.

For tunnel construction in swellable geomaterials mainly two different strategies can be fol-

lowed. The first one uses a massive stiff lining capable of carrying large swelling pressures.

The second involves a flexible tunnel support system, allowing some swelling deformations

to occur and thus reducing the swelling pressures acting on it. Up to now tunnel construc-

tion in swellable soils or rocks has been mainly performed using conventional methods,

since they can be more easily adapted to the local soil or rock conditions. However,

mechanized tunneling is an attractive alternative, since it regularly allows more econom-

ical and time-efficient tunnel construction. For an application in swellable geomaterials,

a flexible tunnel support system can be realized by deformable lining segments and / or

a deformable grout. Extensive research on such deformable tunnel support systems was

done in the framework of the collaborate research center SFB 837 ”Interaction modelling

in mechanized tunneling” funded by the German Research Council (DFG). Thereby, the

sub-project A5 investigated the hydro-mechanical behavior of swellable clay shales, with

a special focus on the development of swelling pressures and strains under tunnel-relevant

boundary conditions, and its consideration in numerical models. The doctoral thesis of

Maximilian Schoen is dedicated to the numerical part of that research project.

In his doctoral thesis Maximilian Schoen has developed adequate numerical models for

the simulation of tunnel excavation in swellable clay shales. The swelling of the clay

shale due to excavation-induced unloading and hydration was described by the Barcelona

Basic model (BBM). The local second gradient model was used as regularization approach

enabling the mesh-independent modeling of shear strain localization in the EDZ. Both
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models were coupled and applied to the problem of mechanized tunneling in the FE code

Lagamine for the first time. In the developed plane strain models the tunnel excavation

is effectively simulated using the convergence-confinement method. The models represent

the excavation of the new Belchen tunnel in northern Switzerland, which served as one of

the reference projects in SFB 837.

The parameters of the BBM model were meticulously calibrated for both intact and

remolded Opalinus clay shale, based either on data from the literature or on various types

of laboratory tests with hydro-mechanical loading performed in the parallel doctoral thesis

of Florian Christ within SFB 837. The excellent model performance, also for more complex

boundary conditions like in the case of the deformation-controlled swelling pressure tests,

was demonstrated by a comparison of element test simulations with the experimental data.

After validation the numerical models for mechanized tunneling were used for detailed

FE parametric studies, concentrating on the formation and evolution of the EDZ, the

development of deformations as well as forces and bending moments in the tunnel lining.

Maximilian Schoen developed suitable methods to reliably quantify the size of the EDZ

and to predict the permeability increase in this zone based on deviatoric strains.

Maximilian Schoen demonstrates that the initial saturation state of the clay shale has

a significant impact on the temporal evolution of the EDZ. While for initially saturated

conditions the EDZ mainly develops during tunnel excavation, the majority of the EDZ

forms after excavation if the clay shale is initially unsaturated. The latter is due to the

time-dependent saturation process, leading to suction loss and material softening. The

comparison of rigid and deformable support systems reveals the beneficial effect of the lat-

ter, particularly for initially unsaturated conditions. The compression of the deformable

grout causes a considerable decrease of the swelling pressures acting on the tunnel lining,

thereby reducing normal forces and bending moments in the lining. Meanwhile the de-

formations of the tunnel lining are only moderately larger in case of deformable tunnel

support system. The results suggest that employing a deformable tunnel support system

may enable a reduction in the amount and costs of materials. The numerical results thus

confirm that for mechanized tunneling in swellable geomaterials a deformable support

system represents an economical and ecologically friendly alternative.

This research has been done in the framework of the project A5 of Collaborate Research

Center (SFB) 837 ”Interaction Modeling in Mechanized Tunneling” at Ruhr-Universität

Bochum. The funding of German Research Council (DFG) is gratefully acknowledged.

Torsten Wichtmann
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Abstract

Tunnel excavation in swellable clay shales poses substantial challenges, as numerous tun-

nels have experienced damage in recent decades due to swelling phenomena. Excavation

processes lead to stress redistribution and, consequently, to damage and a resulting perme-

ability increase around the tunnel. This affected zone, known as the Excavation damaged

Zone (EDZ), is particularly critical because swelling in clay shales can only occur when

water is available. The resulting swelling pressure must be accounted for in the design of

the tunnel support system. However, the evolution of this pressure is highly dependent on

water ingress and the allowed deformations of the support system. To mitigate swelling,

thereby reducing material usage and enhancing the long-term safety of the tunnel, mech-

anized tunnel excavation is preferred, as it imposes less disturbance on the clay shales

compared to other methods.

Although efforts are made to minimize swelling, its complete prevention remains unachiev-

able. In response to these geological conditions, two primary tunnel support strategies

are employed: a rigid support system that resists deformation during swelling, requiring

substantial material, and a deformable support system that accommodates deformations,

thereby reducing swelling pressure. The deformable support system, still under develop-

ment for mechanized excavations, offers promising potential for material efficiency, sus-

tainability, and reduced CO2 emissions. While previous studies have modeled the EDZ,

none have thoroughly examined swelling in the context of mechanized tunnel excavation.

This thesis aims to bridge that gap by investigating the integration of these concepts.

Given the complexity of tunnel excavation and the interactions between clay shales and

tunnel support systems, this study employs finite element modeling to examine the exca-

vation process and the evolution of the EDZ. The swelling behavior of Opalinus clay is

modeled using the Barcelona Basic Model. The corresponding constitutive parameters are

calibrated using laboratory tests to capture the mechanical behavior and swelling char-

acteristics of the clay shales. Special attention is devoted to the dependency of swelling

behavior on allowed deformations, which is critical for designing efficient tunnel sup-

port systems. The EDZ is modeled using shear strain localization, with the local second

gradient model as a regularization technique to eliminate mesh dependency. Increased

permeability within the EDZ is modeled by linking intrinsic permeability to shear strains.

A comprehensive parameter study identifies the model parameters influencing the EDZ,

followed by a comparative analysis of the two tunnel support strategies.
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The study achieved mesh-independent simulations of the EDZ, confirming the effective-

ness of the chosen methods. Among the parameters analyzed, the tunnel diameter proved

to be the most influential factor affecting the EDZ. In contrast, parameters that are diffi-

cult to determine prior to excavation had minimal to negligible impact, underscoring the

reliability of the modeling approach. Results reveal that, in case of an initially saturated

conditions, the most substantial EDZ growth occurs during the excavation phase, empha-

sizing the importance of selecting an appropriate excavation method. Furthermore, the

deformable support system demonstrated comparable tunnel deformations while reduc-

ing swelling pressure, showcasing its potential to enhance material efficiency and ensure

long-term tunnel stability.



vii

Zusammenfassung

Der Tunnelvortrieb in quellfähigem Tonstein stellt eine erhebliche Herausforderung dar,

da in den letzten Jahrzehnten an zahlreichen Tunneln Schädigungen festgestellt wurden,

die auf das Quellen des umliegenden Gesteins zurückzuführen sind. Der Vortriebspro-

zess führt zu Spannungsumlagerungen und in der Folge zur Ausbildung von Scherzonen

und Rissbildungen im Tonstein, wodurch sich die Durchlässigkeit im Bereich um den

Tunnel erhöht. Diese betroffene Zone, bekannt als Excavation Damaged Zone (EDZ), ist

von besonderer Bedeutung, da ein Quellen des Tonsteins nur bei Wasserzutritt auftreten

kann. Der daraus resultierende Quelldruck muss bei der Auslegung des Tunnelausbaus

berücksichtigt werden. Die Entwicklung des Quelldrucks hängt jedoch stark vom Was-

serzutritt sowie den zugelassenen Verformungen des Tunnelausbaus ab. Um das Quellen

zu begrenzen und damit den Materialeinsatz des Tunnelausbaus zu reduzieren sowie die

langfristige Standsicherheit des Tunnels zu erhöhen, wird der maschinelle dem konven-

tionellen Tunnelvortrieb vorgezogen, da er dem Tonstein während des Tunnelvortriebes

weniger Auflockerungen ermöglicht.

Obwohl Anstrengungen unternommen werden, das Quellen des Tonsteins zu minimieren,

ist eine vollständige Vermeidung nicht möglich. In Reaktion auf diese geologischen Ge-

gebenheiten werden zwei grundlegende Tunnelausbauarten angewendet: ein starrer Tun-

nelausbau, welcher Verformungen während der Volumenzunahme des Tonsteins infolge

des Quellens widersteht, jedoch einen hohen Materialeinsatz erfordert, sowie ein verform-

barer Tunnelausbau, welcher Verformungen explizit zulässt und dadurch den Quelldruck

reduziert. Letzterer befindet sich für maschinelle Vortriebe noch in der Entwicklung, zeigt

jedoch vielversprechendes Potenzial im Hinblick auf Materialeffizienz, Nachhaltigkeit und

reduzierte CO2-Emissionen. Während bereits frühere Studien die EDZ modellierten, wur-

de das Quellverhalten im Kontext des maschinellen Tunnelvortriebs bislang nicht umfas-

send untersucht. Ziel dieser Arbeit ist es, diese Forschungslücke durch eine integrative

Betrachtung zu schließen.

Angesichts der Komplexität des Tunnelvortriebs sowie der Wechselwirkungen zwischen

Tonstein und Tunnelausbau kommt in dieser Arbeit die Finite-Elemente-Methode zum

Einsatz, um den Vortriebsprozess und die Entwicklung der EDZ zu analysieren. Das Quell-

verhalten des Opalinustons wird mittels des Barcelona Basic Models abgebildet. Die zu-

gehörigen konstitutiven Parameter werden auf Grundlage von Laborversuchen kalibriert,

um das mechanische Verhalten sowie die Quelleigenschaften des Tonsteins realitätsnah zu
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erfassen. Besonderes Augenmerk liegt dabei auf der Abhängigkeit des Quellverhaltens von

den zulässigen Verformungen, die für die Auslegung eines effizienten Tunnelausbaus von

entscheidender Bedeutung ist. Die EDZ wird unter Annahme von lokalisierter Schädigung

(Scherbänder) modelliert, wobei das lokale Second-Gradient-Modell als Regularisierungs-

technik zur Vermeidung von Netzabhängigkeiten dient. Die erhöhte Durchlässigkeit inner-

halb der EDZ wird durch eine Kopplung der intrinsischen Durchlässigkeit an die Scher-

dehnung berücksichtigt. Durch eine umfassende Parameterstudie wurden diejenigen Mo-

dellparameter identifiziert, welche den größten Einfluss auf die EDZ haben, gefolgt von

einem Vergleich der beiden Tunnelausbauarten.

Die vorliegende Arbeit erreichte netzunabhängige Simulationsergebnisse der EDZ und

bestätigte damit die Wirksamkeit der gewählten Methodik. Von den untersuchten Pa-

rametern zeigte der Tunneldurchmesser den größten Einfluss auf die Ausdehnung der

EDZ. Dagegen wurden fü Parameter, die im Vorfeld der Vortriebsmaßnahme nur schwer

zu bestimmen sind, nur geringe bis vernachlässigbare Auswirkungen festgestellt, was die

Aussagekraft des Modellierungsansatzes unterstreicht. Die Ergebnisse belegen, dass die

bedeutendste Ausdehnung der EDZ bei Annahme eines initial vollständig gesättigten Zu-

stands bereits kurz nach dem Vortrieb erreicht wird, was die Relevanz einer geeigneten

Wahl der Vortriebsmethode hervorhebt. Zudem zeigte der verformbare Tunnelausbau im

Vergleich zum starren Ausbau ähnliche Tunnelverformungen bei gleichzeitig reduzierten

Quelldrücken, womit er ein erhebliches Potenzial zur Verbesserung der Materialeffizienz

aufweist bei gleichzeitiger Gewährleistung der langfristigen Tunnelstandsicherheit.



Contents

Preface of the editor i

Acknowledgements iii

Abstract v

Zusammenfassung vii

1. Introduction 1

1.1. Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Layout of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. State of the art 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Swelling of clay shales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. Introduction to rock swelling mechanisms . . . . . . . . . . . . . . . 8

2.2.1.1. Pure mechanical swelling . . . . . . . . . . . . . . . . . . . 8

2.2.1.2. Innercrystalline swelling . . . . . . . . . . . . . . . . . . . 8

2.2.1.3. Osmotic swelling . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2. Laboratory tests for characterizing swelling of clays . . . . . . . . . 11

2.2.2.1. Tests for determining free swelling strains . . . . . . . . . 11

2.2.2.2. Tests for determining axial swelling pressure . . . . . . . . 13

2.2.2.3. Test for determining swelling pressure as a function of ax-

ial swelling strain . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3. Swelling laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3.1. Analytical swelling laws . . . . . . . . . . . . . . . . . . . 16

2.2.3.2. Numerical representation of swelling . . . . . . . . . . . . 20

ix



x Contents

2.3. Tunnel excavation in swellable clay shales . . . . . . . . . . . . . . . . . . . 28

2.3.1. Tunnel excavation techniques . . . . . . . . . . . . . . . . . . . . . 28

2.3.1.1. Conventional tunnel excavation . . . . . . . . . . . . . . . 28

2.3.1.2. Mechanized tunnel excavation . . . . . . . . . . . . . . . . 30

2.3.2. Numerical modeling of mechanized tunnel excavation . . . . . . . . 32

2.3.2.1. Convergence-confinement method . . . . . . . . . . . . . . 33

2.4. Excavation Damaged Zone (EDZ) . . . . . . . . . . . . . . . . . . . . . . . 36

2.5. Modeling approaches for the EDZ . . . . . . . . . . . . . . . . . . . . . . . 39

2.6. Shear strain localization in geomaterials . . . . . . . . . . . . . . . . . . . 40

2.6.1. Small-scale evidence of strain localization . . . . . . . . . . . . . . . 41

2.6.2. Large-scale observation of strain localization . . . . . . . . . . . . . 42

2.7. Computational modeling of strain localization . . . . . . . . . . . . . . . . 47

2.7.1. Bifurcation phenomenon . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7.2. Rice criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.3. Regularization methods . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7.4. Framework of the coupled local second gradient model . . . . . . . 52

2.7.4.1. Balance equations of the coupled local second gradient model 52

2.7.4.2. Second gradient constitutive equation . . . . . . . . . . . 55

2.8. Intrinsic hydraulic permeability evolution . . . . . . . . . . . . . . . . . . . 56

3. Determination of material parameters 59

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2. Hydro-mechanical properties of intact Opalinus clay . . . . . . . . . . . . . 60

3.3. Parameter calibration of remolded Opalinus clay . . . . . . . . . . . . . . . 63

3.3.1. Mechanical parameters of remolded Opalinus clay . . . . . . . . . . 63

3.3.2. Hydraulic parameters of remolded Opalinus clay . . . . . . . . . . . 74

3.3.2.1. Water retention behavior . . . . . . . . . . . . . . . . . . 74

3.3.2.2. Intrinsic hydraulic permeability . . . . . . . . . . . . . . . 75

3.4. Numerical modeling of swelling tests . . . . . . . . . . . . . . . . . . . . . 77

3.4.1. Intact Opalinus clay shale . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2. Remolded Opalinus clay . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5. Strain localization of Opalinus clay using biaxial test . . . . . . . . . . . . 90

4. Numerical modeling of shear strain localization 99

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2. Simulation of biaxial compression test . . . . . . . . . . . . . . . . . . . . . 100

4.2.1. Geometry, loading and boundary conditions . . . . . . . . . . . . . 100



Contents xi

4.2.2. Parameter study of the biaxial compression test . . . . . . . . . . . 103

4.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1. Effect of element size . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.2. Effect of second gradient elastic modulus . . . . . . . . . . . . . . . 109

4.3.3. Effect of different permeability evolution methods during shearing

path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.4. Effect of the evolution parameter βper on volumetric strain-dependent

permeability evolution . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.5. Effect of the evolution parameter βper on deviatoric strain-dependent

permeability evolution . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.6. Effect of the threshold yield index Y I thr on deviatoric strain-dependent

permeability evolution . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.7. Effect of different permeability evolution methods during wetting

path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3.8. Effect of βper on volumetric strain-dependent permeability evolution 132

4.3.9. Effect of βper on deviatoric strain-dependent permeability evolution 133

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5. Numerical modelling of mechanized tunnel excavation 137

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2. Case study: The new Belchen tunnel project . . . . . . . . . . . . . . . . . 139

5.3. 2D plane strain model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1. Geometry and boundary conditions . . . . . . . . . . . . . . . . . . 140

5.3.2. Simulation of the tunnel excavation process . . . . . . . . . . . . . 143

5.3.3. Constitutive parameters of tunnel support materials . . . . . . . . . 144

5.3.3.1. Tunnel lining parameters . . . . . . . . . . . . . . . . . . 145

5.3.3.2. Rigid grout parameters . . . . . . . . . . . . . . . . . . . . 146

5.3.3.3. Deformable grout parameters . . . . . . . . . . . . . . . . 147

5.3.4. Staged construction process of supported tunnel . . . . . . . . . . . 151

5.4. Temporal evolution of the EDZ for unsupported tunnel excavation . . . . . 152

5.4.1. Temporal evolution of deviatoric strains . . . . . . . . . . . . . . . 152

5.4.2. Temporal evolution of plastic points around the tunnel . . . . . . . 154

5.4.3. Computation and temporal evolution of the plastic zone in terms

of size and permeability . . . . . . . . . . . . . . . . . . . . . . . . 163

5.4.4. Temporal evolution of the bifurcation criterion around the tunnel . 167

5.4.5. Temporal evolution of permeability around the tunnel . . . . . . . . 169



xii Contents

5.4.6. Calculation of EDZ area based on permeability ratio and determi-

nation of the threshold value . . . . . . . . . . . . . . . . . . . . . . 171

5.4.7. Temporal evolution of the EDZ area and permeability within EDZ . 174

5.5. Parameter study of unsupported tunnel . . . . . . . . . . . . . . . . . . . . 177

5.5.1. Presentation of the investigated parameters . . . . . . . . . . . . . 177

5.5.2. Effect of flow rules of the mechanical law on the EDZ . . . . . . . . 182

5.5.3. Effect of number of imperfect elements . . . . . . . . . . . . . . . . 186

5.5.4. Effect of element size . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.5.5. Effect of the shear strength of the material imperfection . . . . . . 194

5.5.6. Effect of second gradient elastic modulus . . . . . . . . . . . . . . . 198

5.5.7. Effect of tunnel diameter . . . . . . . . . . . . . . . . . . . . . . . . 202

5.5.8. Conclusion of parameter study . . . . . . . . . . . . . . . . . . . . . 206

5.6. Comparative analysis of tunnel support strategies . . . . . . . . . . . . . . 206

5.6.1. Saturated initial conditions . . . . . . . . . . . . . . . . . . . . . . 207

5.6.1.1. Evaluation of the resulting EDZ and mean permeability . 207

5.6.1.2. Analysis of tunnel support system deformations and inter-

nal forces of tunnel lining . . . . . . . . . . . . . . . . . . 211

5.6.2. Unsaturated initial conditions . . . . . . . . . . . . . . . . . . . . . 223

5.6.2.1. Evaluation of the resulting EDZ and mean permeability . 224

5.6.2.2. Analysis of tunnel support system deformation and inter-

nal forces of tunnel lining . . . . . . . . . . . . . . . . . . 227

5.6.3. Evaluation of the tunnel support strategies and conclusion . . . . . 236

5.7. Modified convergence-confinement method . . . . . . . . . . . . . . . . . . 237

5.7.1. 2D axisymmetric model . . . . . . . . . . . . . . . . . . . . . . . . 238

5.7.2. Validation of internal force reduction method . . . . . . . . . . . . 239

5.7.3. Construction of the convergence-confinement curve . . . . . . . . . 242

5.7.4. Resulting excavation damaged zone using modified convergence-

confinement method . . . . . . . . . . . . . . . . . . . . . . . . . . 247

5.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6. Conclusions and recommendations 259

6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.3. Outlook and recommendations for further studies . . . . . . . . . . . . . . 262

Bibliography 265



Contents xiii

A. Appendix A 283

B. Appendix B 285

C. Appendix C 287





1. Introduction

1.1. Background and motivation

The tunneling process and the long-term safe operation of tunnel structures in swelling

clay shales have posed significant challenges for engineers for decades. As highlighted by

Amstad and Kovári (2001); Anagnostou et al. (2010); Einstein (1996); Steiner (1993),

numerous tunnel projects have demonstrated swelling-induced deformations or damage

throughout their lifespans. This challenge is particularly complex due to the inherent dif-

ficulties associated with tunneling, which involves multiple interacting subsystems such as

the surrounding ground, the tunnel boring machine (TBM), and tunnel support systems.

In this context, the hydro-mechanically coupled processes play a critical role.

During tunnel excavation, inevitable damage occurs to the surrounding formation, forming

the so-called Excavation Damaged Zone (EDZ). Within this zone, the hydro-mechanical

properties differ from those in the intact formation. The mechanical stiffness decreases,

while the damage creates preferential flow paths for water transport from surrounding

layers along the tunnel, thus increasing permeability. In the case of swelling clay shales,

water transfer poses an immediate risk of swelling, which must be considered in tunnel

design.

Two principal approaches for handling swelling soils in conventional tunneling method

are known: the resistance principle and the yielding principle (Wittke, 2014). The resis-

tance principle involves designing the tunnel support to be as rigid as possible, so it does

not deform when swelling (volumetric increase) occurs. This method requires significant

amounts of materials, including both concrete and steel, to ensure high stiffness. However,

this approach leads to high material costs and, ecologically, to substantial CO2 emissions

due to concrete production. Alternatively, the yielding principle allows for the tunnel

support to deform in a pre-defined manner when swelling of the ground occurs, reducing

the swelling pressure exerted on the tunnel.

1
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Mechanized tunnel excavation (using TBMs) offers several advantages compared to con-

ventional tunneling methods, such as higher automation and better control over the de-

formations of the surrounding ground due to the ability to support it during excavation

(Maidl et al., 2011). This results in generally smaller deformations compared to conven-

tional tunneling methods. Since there is a correlation between deformations and the de-

velopment of damage, mechanized tunneling could provide significant benefits in swelling

clay shales, by limiting both, the extend and intensity of the EDZ. Unlike the conven-

tional tunneling method, which has the ability to use a deformable tunnel support, no

comparable approach has been developed for mechanized tunneling.

This thesis is conducted within the framework of the Collaborative Research Center 837

”Interaction Modeling in Mechanized Tunneling” where research is focused on adapting

and implementing this concept for mechanized tunneling in swelling clay shales. Within

the framework of the Collaborative Research Center 837, each subproject focuses on

specific aspects of mechanized tunneling processes. Subproject A5, to which this thesis

is associated, specifically addresses the challenges related to swelling clay shales. This

focus is of particular importance, as the unique properties of clay shales, especially the

hydro-mechanical interactions, have complex implications for tunnel construction and the

long-term operation of tunnel structures.

A crucial aspect related to ground conditions is to analyze and understand the underly-

ing processes that lead to swelling. With the insights gained, the magnitude of swelling

pressure, and the swelling pressure-strain relationship during tunnel excavation can be

derived. Understanding the formation of the EDZ is essential, as it governs not only the

immediate mechanical behavior of the surrounding formation but also its long-term sta-

bility. The EDZ forms as a result of the tunneling process, and its characteristics evolve

over time, influenced by factors such as excavation rate, support system design, and the

inherent properties of swelling clay shales. Understanding the temporal development of

the EDZ and its interactions with tunnel excavation is therefore critical for a comprehen-

sive assessment of tunnel stability, as it is the key component which controls the water

transfer in the nearfield of the tunnel and consequently the swelling of the clay shale.

The changes in the hydro-mechanical properties of the EDZ, particularly in terms of

permeability and mechanical stiffness, have a significant impact on water transport. In

swelling clay shales, this can lead to an increase in swelling pressure, which can damage

the tunnel structure if not adequately considered in the design of the tunnel support

system. In this context, the interaction between the EDZ and the tunnel support system

becomes especially important. When a deformable tunnel support system is used, it allows
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reduction of swelling pressure by allowing controlled deformations, thereby reducing the

mechanical loads on the tunnel lining. Whereas further ground deformations could have a

negative impact leading to a further increase in size of the EDZ. This dynamic interaction

between the EDZ and the tunnel support system needs to be thoroughly investigated, as it

is crucial for optimizing support systems that ensure both safety and economic feasibility

in the tunneling process.

1.2. Objectives

The primary objective of this work is to develop a fundamental understanding of the

hydro-mechanically coupled processes and interactions occurring during and after mech-

anized tunnel excavations in swelling clay shales. The study focuses on two main aspects:

first, the modeling of clay shale swelling under various displacement boundary conditions,

and second, the mesh-independent modeling of the Excavation Damaged zone (EDZ),

which significantly influences the hydro-mechanical regime in the nearfield of the tunnel.

A key aim is to investigate which aspects of the model affect the feasibility of TBM-

driven tunnel excavations in swelling clay shales. Particular emphasis is placed on ana-

lyzing different tunnel construction strategies to provide recommendations for a safe yet

economically viable tunneling process in swelling clay shales.

The resulting objectives of this thesis are defined as follows:

• Calibration of constitutive parameters based on laboratory experiments on swellable

clay shale conducted at Ruhr University Bochum (RUB), deriving both mechanical

and hydraulic constitutive model parameters.

• Modeling and validation of swelling tests under various tunnel-relevant deformation

boundary conditions using laboratory experiments conducted at RUB.

• Conducting an in-depth analysis of shear strain localization in swellable clay shales

under well-controlled boundary conditions, including the identification of stress

paths that lead to localization, determination of key model parameters influencing

this behavior, and the comparison and selection of suitable modeling approaches for

representing permeability increases in the EDZ.

• Numerical investigation of the growth of the EDZ during and after the completion

of mechanized tunnel excavation in swelling clay shales, supported by parametric

studies to identify key model parameters.
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• Analyzing and comparison of the influence of tunnel support stiffness/deformability

and the modeling approach for tunnel excavation on the temporal development of

the EDZ.

1.3. Layout of the thesis

Following the introduction, Chapter 2 provides an overview of the swelling behavior of

clay shales. This includes a discussion of the mechanisms driving swelling, laboratory

experiments that investigate swelling behavior, and a review of existing swelling laws

available in the literature. Additionally, the chapter presents the fundamentals of tun-

neling excavation techniques and explores the possibilities for numerically modeling the

tunneling process. Particular emphasis is placed on the Excavation Damaged Zone (EDZ),

its characteristics, and modeling approaches, including methods for increasing permeabil-

ity within the EDZ. This chapter establishes the foundational knowledge required for the

subsequent chapters.

Chapter 3 derives the hydro-mechanical properties of intact Opalinus clay through an

extensive literature review. Furthermore, mechanical and hydraulic constitutive parame-

ters are determined using laboratory experiments conducted at Ruhr University Bochum

(RUB) on remolded Opalinus clay. Using these parameters, various swelling tests with

tunnel-relevant boundary conditions, also performed at RUB, are simulated and validated

against model results. The aim is to accurately replicate the hydro-mechanical behavior

of Opalinus clay and to scale these findings from the laboratory level to the tunneling

scale in subsequent chapters.

Chapter 4 focuses on the shear strain localization behavior of Opalinus clay. A numerical

model with well-defined boundary conditions is developed to study various stress paths

and their impact on shear strain localization. Based on this, multiple model parameters

are investigated through a parameter study. Additionally, the approaches for permeability

enhancement within the EDZ introduced in Chapter 2 are analyzed in detail.

Building on these insights, Chapter 5 addresses the modeling of tunneling processes with

a focus on the formation and evolution of the EDZ. This is demonstrated through a case

study, which is briefly introduced at the beginning of the chapter. Subsequently, the

numerical modeling of tunnel excavation is presented. The systematic evaluation of the

EDZ is emphasized, as several model parameters need to be analyzed for their influence

on the EDZ. After identifying key parameters using simulations of unsupported tunnels,
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different tunnel support systems are evaluated and compared. At the end of the chapter,

the influence of a modified modeling approach for tunnel excavation on the development

of the EDZ is introduced and analyzed.

Finally, Chapter 6 summarizes all findings of the thesis. The results are contextualized,

and potential future research directions within the scope of this work are outlined.





2. State of the art

2.1. Introduction

In this chapter the fundamentals for the numerical modeling of mechanized tunnel excava-

tions in swellable clay shales are outlined. Initially, the swelling phenomenon is examined,

focusing on the various swell mechanisms, laboratory tests available to analyze swelling,

and the possibilities of numerical modeling of swelling. Subsequently, the tunnel excava-

tion techniques and the numerical modeling approach using a 2D plane strain model are

discussed. The significance of the excavation damaged zone is explained, underlining its

importance for this study and outlining methods for its modeling. Finally, the underlying

methodologies and constitutive frameworks of this research are elaborated.

2.2. Swelling of clay shales

Swelling can cause serious damage to tunnel supports (Steiner, 1993; Berdugo et al.,

2009a,b; Alonso and Olivella, 2008), which are the primary focus of this research, as well

as to other infrastructural constructions, such as high-performance highways (Kleinert and

Einsele, 1978) and bridges (Alonso and Ramon, 2013). Thus, it is crucial to comprehend

the underlying swelling mechanisms and methods for identifying and idealizing swelling

phenomena.

In this section, first the various swell mechanisms are described. Subsequently, different

laboratory tests for investigating and quantifying swelling are introduced. Finally, an

overview of available swelling laws to aid in the idealization of the investigated swelling

phenomena are presented.

7
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2.2.1. Introduction to rock swelling mechanisms

Rock swelling can manifest through a variety of mechanisms, broadly categorized into

two groups: physical and chemical mechanisms, as noted by Pimentel (2015). Among the

chemical swell mechanisms, anhydrite swelling stands out prominently. The swelling by

chemical interactions in anhydrite arises from the hydration of the anhydrite minerals,

leading to their transformation into gypsum and resulting in a substantial volume increase

of up to 60% (Butscher et al., 2018). However, since this research primarily focuses on

pure clay shales, chemical swelling will not be extensively discussed here, as it is not

applicable to pure clay formations.

In the field of physical swelling mechanisms, three distinctive processes come to the fore-

front: pure mechanical swelling, innercrystalline swelling, and osmotic swelling (Pimentel,

2015). The subsequent section elaborates on these physical swelling mechanisms, explain-

ing the details of each swell mechanism.

2.2.1.1. Pure mechanical swelling

Pure mechanical swelling is a phenomenon that arises from a reduction in negative pore

pressure and can manifest in any argillaceous rock, also known as inverse consolidation

(Pimentel and Anagnostou, 2013). During unloading, such as in the course of tunnel

excavation, a decrease in total stress occurs. If the permeability of the material is low,

the inflow of water is delayed, and negative pore water pressures develop. As a result,

the effective stress remains largely unchanged initially. Over time, as water gradually

re-enters the pore space and the negative pore pressure dissipates, the effective stress

decreases, leading to a volume increase, which is called mechanical swelling. According

to Pimentel (2015), its relevance in tunneling and foundation engineering is minimal due

to its inherently low swelling potential compared to anhydrite swelling. For the swelling

of clay shales this type of swelling should be considered.

2.2.1.2. Innercrystalline swelling

Clay minerals can swap the central cations in their tetrahedal and octahedral structures

with other cations, often with lower valence. In the case of fully dry montmorillonite,

the exchangeable interlayer cations are situated either on the surface of the layers or

within the hexagonal holes of the tetrahedral sheets. The layers, negatively charged, are

tightly bound together by the interlayer cations and the van der Waals forces operating
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at this short distance. Upon contact with water, these interlayer cations undergo hydra-

tion and arrange themselves on a plane positioned midway between the clay layers. This

rearrangement results in an expansion of the spacing between the layers, which is called

innercrystalline swelling as can be seen in Figure 2.1. Notably, the volume of montmo-

rillonite can undergo a significant increase, potentially doubling the volume, during the

process of innercrystalline swelling.

However, the overburden pressures required to counteract innercrystalline swelling are

typically so substantial, over 100MPa according to Madsen and Müller-Vonmoos (1989),

which are not reached at typical depths where tunnel excavation occurs.

Furthermore, it can be assumed that the innercrystalline swelling in the depths where

construction activities take place is usually already completed, thus engineers commonly

do not encounter or address this specific challenge (Ferrage, 2016; Madsen and Müller-

Vonmoos, 1989; Massat et al., 2016).

Figure 2.1.: Innercrystalline swelling of montmorillonite after Kraehenbuehl et al. (1987)
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2.2.1.3. Osmotic swelling

Osmotic swelling is a distinctive type of swelling observed when clayey sedimentary rocks

undergo unloading, such as during excavation, allowing them to absorb water. Unlike

innercrystalline swelling, which primarily acts over small distances (up to 1 nm), osmotic

swelling relies on the repulsion between electric double layers and can exert its influence

over much larger distances (Madsen and Müller-Vonmoos, 1989).

Notably, the swelling stresses associated with osmotic swelling are significantly smaller

compared to innercrystalline swelling, typically around 2MPa rather than 100MPa. The

driving force behind osmotic swelling is the substantial difference in concentration be-

tween ions electrostatically held near the clay surface and those present in the pore water

of the formation. Crystal lattice irregularities manifest as an excess negative charge, ne-

cessitating the presence of positive ions in close proximity to the clay surface. This results

in an extremely high concentration of positive ions near the surface, contrasting with a

very low concentration of negative ions. The positive ion concentration diminishes with

increasing distance from the surface, while the concentration of negative ions rises. This

interplay creates a diffuse electric double layer comprising the negatively charged clay

surface and the surrounding ion cloud (Madsen and Müller-Vonmoos, 1989).

The observed swelling in clay occurs when two such negative potential fields overlap,

leading to mutual repulsion and contributing to the phenomenon of osmotic swelling as

depicted in Figure 2.2.

Figure 2.2.: Osmotic clay swelling after Madsen and Müller-Vonmoos (1989)
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2.2.2. Laboratory tests for characterizing swelling of clays

Following the elaboration of different swelling mechanisms, the next crucial step involves

evaluating the swelling potential of clays in a laboratory setting. The objective of these

tests is to establish a stress-strain relationship, crucial for the formulation of a swelling

law (see Section 2.2.3). All tests share the common procedure of preparing a sample,

followed by hydration, leading to swelling of the sample.

Unfortunately, the determination of swelling potential in the laboratory presents a chal-

lenge due to the variety of available methods, each with different experimental procedures

and standards, such as ISRM, DGGT and Swiss recommendations. Literature catego-

rizes these tests based on various criteria. Pimentel (2015) proposes grouping based on

the confinement conditions of the test apparatus, whereas Sridharan et al. (1986) groups

them according to the test procedure into free swelling-load, swell-under-load, and con-

stant volume categories. According to ISRM (1989, 1999), grouping is based on the results

obtained, such as determining axial swelling pressure, free swelling strain, or swelling pres-

sure as a function of axial swelling strain. Although analysis of the swelling phenomena

in the laboratory is crucial, this thesis focuses on the numerical modeling of the swelling.

Therefore, only a brief overview of the available laboratory tests is provided in the fol-

lowing subsection, categorized according to ISRM (1989, 1999). The main emphasis here

is to highlight the different boundary conditions of the tests, which are crucial for the

numerical modeling. For a more in-depth and critical review of the different swelling tests

the author refers to Pimentel (2015).

2.2.2.1. Tests for determining free swelling strains

Free swelling strains represent the extent to which the sample can expand in one direction

without encountering any external constraints. There are two prominent approaches in

the literature to determine the free swelling strain.

The first, under unconfined conditions, measures the deformation of either cubic specimens

in all three orthogonal directions after watering (ISRM, 1979) or of a disk in axial and

radial direction ISRM (1989, 1999), both illustrated in Figure 2.3.

The second, known as the swell-heave test (DGGT, 2022), is performed in an oedometer

device, determining the maximum swelling strain under a low dead load (e.g., 5 kPa), as

shown in Figure 2.4.
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It is important to emphasize that all mentioned tests aim to determine the maximum

swelling strain, despite their significant differences in boundary conditions. It should be

noted that methods outlined by ISRM (1979, 1989, 1999) may overestimate the resulting

maximum swelling strain due to the unconfined nature of the test, where the sample could

disintegrate. This may also result in non-homogeneous deformations, making the mea-

surement of swelling strains challenging and less straightforward. According to Pimentel

(2015), a test conducted under oedometric conditions should be preferred to accurately

determine the maximum swelling strain for a swelling law.

Figure 2.3.: Free swell test setup according to ISRM (1979) (left) and ISRM (1999) (right)

Figure 2.4.: Free swell test setup according to DGGT (2022)
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2.2.2.2. Tests for determining axial swelling pressure

The definition of swelling pressure varies across different literature sources. Some define

it as the pressure measured during the hydration of a sample under constant volume

conditions, while others describe it as the load needed to maintain the volume constant.

However, all standards agree that the maximum swelling pressure is determined within

an oedometer device, as shown in Figure 2.4. In tests where swelling pressure is measured

under constant volume conditions, either a rigid frame or a purpose-built apparatus is

utilized. These tests aim to maintain nearly constant volume conditions by restricting

axial and radial deformations.

Despite the use of a rigid frame, slight deformations may still occur. Therefore, ISRM

(1989, 1999) recommend applying small deformations as compensation if necessary.

An alternative method, proposed by Henke et al. (1975) and adopted by DGGT (2022),

involves placing the sample in an oedometer ring without axial constraints. The sample is

then hydrated and allowed to freely swell in the axial direction until equilibrium is reached.

Subsequently, stepwise loading is applied until all swelling strains are compensated. The

maximum stress required for compensation is termed the equivalent swelling pressure.

2.2.2.3. Test for determining swelling pressure as a function of axial swelling strain

While the maximum swelling strain and swelling pressure are important parameters for

characterizing the swelling phenomenon, it is the relationship between swelling pressure

and swelling strain that is of paramount importance for construction projects. On site,

deformations often occur, so construction projects typically operate in an equilibrium

state between swelling strain and swelling pressure.

In the literature, this relationship is determined in several different ways, including varia-

tions in boundary conditions (e.g., constant load or constant volume), the number of tests

conducted (e.g., single test or series of tests), and differences in initial loading procedures.

The swelling tests proposed by DGGT (2022) follow the methodology outlined by Huder

and Amberg (1970), with a slight modification suggested by ISRM (1989, 1999). Con-

ducted under oedometer conditions, these tests allow the sample to swell under a high

constant load until equilibrium is achieved.

The load must be sufficiently high to minimize deformations due to swelling while avoiding

excessive compaction or modifications of the initial structure that could falsify the results.
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As the appropriate load is unknown prior to testing, it is often chosen based on the in situ

overburden pressure, as suggested by Pimentel (2015). Subsequently, a stepwise unloading

process records equilibrium swelling pressure and strain for each step, forming a swelling

pressure-strain relationship, as shown in Figure 2.5 (right).

The key difference between the standards lies in the loading procedure, where the method

of Huder and Amberg (1970) involves loading, unloading, and reloading before watering,

while ISRM (1999) loads the sample only once before water hydration. It should be noted

that in the previously mentioned tests, the swelling pressure-strain relationship is obtained

from a single soil sample, and the maximum swelling pressure has to be extrapolated using

the obtained curve.

Whereas, in the swelling-under-load method explained by Sridharan et al. (1986), at least

three tests on identical samples under three different constant loads are needed. After

hydration, when each sample reaches equilibrium, the resulting swelling strain is recorded

alongside the applied vertical stress. Plotting the results of these individual tests in a

semi-logarithmic stress-strain diagram provides a swell-under-load curve, as illustrated in

Figure 2.5 (left). The maximum swelling pressure as well as the free swelling strain need

to be extrapolated here as well.

Figure 2.5.: Swell test procedure according to Sridharan et al. (1986) (left) and Huder

and Amberg (1970) (right)
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Additionally, in the work of Pimentel and Anagnostou (2013), a purpose-built swelling

test apparatus is introduced along with an alternative testing procedure as seen in Fig-

ure 2.6. The sample is initially watered under constant volume conditions, requiring no

compensation strains due to the high rigidity of the load frame. After equilibrium is at-

tained, the sample undergoes stepwise unloading, with stress maintained constant in each

step until equilibrium swelling strain is reached, as illustrated in Figure 2.6 (left). The

initial strain increase at the beginning of each unloading step corresponds to the elastic

heave.

According to Pimentel and Anagnostou (2013), these swelling tests can be conducted

either in a load-controlled or, with slight modification, a deformation-controlled manner as

shown in Figure 2.6 (right). The difference is that in the deformation-controlled method,

the unloading is prescribed and maintained at a constant displacement until a steady

swelling pressure is established.

The advantage of this test is that both the maximum swelling pressure and the free swelling

strains can be determined with just one test, thus eliminating the extrapolation required

by the tests of Huder and Amberg (1970) and Sridharan et al. (1986). Furthermore,

Pimentel (2015) demonstrates that the interpolated maximum swelling pressure, using

either ISRM (1989, 1999) or DGGT (2022) method, overestimate the maximum swelling

pressure compared to the test procedure by Pimentel (2015).

Figure 2.6.: Swell test procedure load-controlled (left) and deformation-controlled (right)

according to Pimentel (2015)
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2.2.3. Swelling laws

After discussing the available laboratory tests for analyzing the swelling potential, it is

essential to simplify and model this potential using either analytical or numerical swelling

laws to incorporate it into finite element simulations.

The literature incorporates a variety of swelling laws designed to elaborate the relationship

between swelling pressure and strain. Broadly categorized, these laws fall into two main

groups: analytical and process-based numerical swelling laws.

The subsequent sections will provide insights into each of these categories. While the

primary focus of this work is on clay swelling and not anhydrite swelling, it is essential to

discuss swelling laws designed for anhydrite (e.g., Kirschke’s or Pimentel’s swelling law)

for the sake of completeness and comprehensive understanding. This inclusion ensures a

thorough exploration of existing theories, even if their direct application may not align

with the specific objectives of the current study.

2.2.3.1. Analytical swelling laws

The most prominent analytical swelling laws include Grob’s swelling law, Kirschke’s

swelling law, and Pimentel’s swelling law. These laws establish relationships between

swelling pressure and swelling strain through analytical equations or other relationships,

which will be explained in the following section.

Grob’s Swelling Law:

Grob (1972) established a linear relationship between swelling strain and the logarithm

of pressure, based on oedometric swelling experiments by Huder and Amberg (1970) (see

Section 2.2.2). These experiments utilized drill core samples of Jurassic Opalinus Clay

and Triassic Gipskeuper, collected from the Belchen tunnel in Switzerland.

The law is expressed as:

q = k −m log p (2.1)

Here, q represents the volumetric strain in percentage, and p is the pressure in kg/cm2.

The constants k and m are material-specific.
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Given that the maximum swelling pressure p0 corresponds to q = 0%, the relationship

can be further expressed as:

k = m log p0 (2.2)

By substituting this expression for m back into Equation 2.1 and changing the notation

of swelling strain and swelling stress, the law can be represented in the more common

form:

ε = k

(
1− log σ

log σ0

)
(2.3)

where, ε denotes the swelling strain, σ is the swelling stress, k represents the swelling strain

when σ = 1kPa, and σ0 characterizes the maximum swelling pressure (see Figure 2.7).

Figure 2.7.: Swelling law proposed by Grob (1972)
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Kirschke’s Swelling Law:

In a study conducted by Kirschke (1996) on Gipskeuper samples obtained from the

Freudenstein tunnel in Germany, it was observed that the stress-strain relationship de-

pends on the test duration. Notably, Kirschke reported that, unlike pure clay formations,

experiments with claysulfate rocks did not reach a final equilibrium state. Grob’s swelling

law, which considers only equilibrium states and neglects any time dependence, is there-

fore unsuitable for claysulfate rocks. While Kirschke acknowledged that this assumption

is acceptable for pure clay formations, he emphasized that anhydrite never reaches equi-

librium, rendering the application of Grob’s law inappropriate.

As depicted in Figure 2.8, the stress and corresponding strains demonstrate an upward

trajectory over time. This led Kirschke (1996) to suggest that the constants k and σ0 (see

Equation 2.3) did not exclusively characterize the formation. Instead, Kirschke argued

that these constants should be considered time-dependent.

It is important to note that the curves presented by Kirschke (1996) for extended swelling

durations were derived by extrapolating stress-strain curves obtained at different time

intervals to predict behavior for future timeframes. Consequently, Kirschke (1996) did

not provide a specific formula.

Figure 2.8.: Swelling law proposed by Kirschke (1996)
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Pimentel’s Swelling Law:

Pimentel (2007) conducted swelling tests with samples from the Gipskeuper formation

obtained at a railway tunnel in southwest Germany, where he identified three distinct

phases in the swelling behavior, each dependent on the applied stress conditions.

Pimentel observed minimal deformation under high pressures (>5.5MPa) and explained

this phenomenon by the prevention of gypsum crystallization. At medium pressures (4−
5.5MPa), he recorded large deformations, which he attributed to gypsum crystallization.

Under low pressures (<4MPa), he noted only a slight additional deformation compared

to the deformations from the previous phase, which Pimentel interpreted as an effect of

reduced stiffness due to the development of macropores (cracks) during swelling, possibly

compounded by gypsum dissolution.

To describe these phases, Pimentel employed a ”tri-linear” relation in a semi-logarithmic

plot as shown in Figure 2.9, providing a visual representation of the intricate stress-strain

relationships observed during swelling under varying pressure conditions.

Figure 2.9.: Swelling law proposed by Pimentel (2007)
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In summary, the swelling law of Grob provides a satisfactory description of the equilib-

rium states between swelling strain and swelling pressure for pure clay formations and

is acceptable for pure clay shales when focusing solely on equilibrium states. However,

an important limitation highlighted by Kirschke (1996) is the neglect of time in Grob’s

formulation. Furthermore, none of the existing laws considers water transfer, and the

equations provided are typically formulated only in 1D. For application in models such as

finite element models, these equations would need to be extended to 2D or 3D formula-

tions. Additionally, it is worth noting that for anhydrite, other phenomena, such as those

described in Pimentel (2007), must be considered, although anhydrite swelling is beyond

the scope of this research.

2.2.3.2. Numerical representation of swelling

In the previous section, analytical swelling laws were discussed. This section shifts the

focus to the numerical representation of swelling, starting with a quick overview of different

modeling approaches and then proceeding to a detailed description of the method used

in this research.

In the literature, three different categories of approaches can be found: models derived

from the analytical swelling law proposed by Grob (1972), mechanical-chemically coupled

approaches, and elasto-plastic models considering soil saturation.

The first group of models incorporates a dedicated swelling term using a 3D generaliza-

tion of the analytical swelling law by Grob (1972) (see Equation 2.3). These models,

such as those proposed by (Anagnostou, 1993; Heidkamp and Katz, 2002; Kiehl, 1990;

Wittke-Gattermann, 2004), extend the original swelling law to include additional fea-

tures like anisotropic or time-dependent behavior. These models provide a comprehensive

understanding of swelling behavior without a coupled description of the material.

Another group of models employs a mechanical-chemically coupled approach, to simulate

the process of hydration of anhydrite. For instance, in Alonso and Olivella (2008), the

swelling strain caused by gypsum crystal growth in fractures is calculated using thermo-

dynamic kinetic equations.

Lastly, the group of elasto-plastic models utilizes soil suction to characterize material

behavior in the unsaturated state. Notable models in this category include the Barcelona

Basic Model (BBM) by Alonso et al. (1990) and its successors formulated in p − q − s

space, where p represents the net stress, q the deviatoric stress, and s the suction, or using

alternative parameters, such as the degree of saturation Sr, instead of suction.
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These models can be further extended by expressing swelling on a microstructure level

using a double-porosity approach. A prominent example is the Barcelona Expansive model

(BExM) by Gens and Alonso (1992), which extends the Barcelona Basic Model to allow

modeling of highly expansive soils.

All of the previously mentioned models are capable of simulating swelling. However, as

the focus of this study is on swelling clay shales, mechanical-chemically coupled models

are not considered, as they have been developed specifically for anhydrite swelling. These

models include features such as crystallization of gypsum, which are not present in clay

shales. While models based on Grob’s model can simulate swelling, they often fail to

accurately capture the mechanical behavior in unsaturated conditions. Therefore, only

elasto-plastic models can be considered for this thesis.

As this thesis focuses on moderately swelling clay shales that do not exhibit dominant

double porosity behavior, the use of the Barcelona Expansive Model (BExM) is not con-

sidered appropriate. Instead, the Barcelona Basic Model (BBM) and its extension, the

Barcelona Basic Model for Expansive Soils (BBMEx), are selected for a more detailed

investigation. The choice of BBM is supported by several considerations: it is a relatively

simple and robust model with proven numerical stability and computational efficiency,

which makes it well-suited for large-scale simulations. Furthermore, the model requires

a limited set of material parameters, enabling a practical calibration based on available

laboratory test data. The BBM has already been successfully applied to large-scale engi-

neering problems (e.g. Rothfuchs et al. (2007), Sánchez et al. (2010), Lee et al. (2021),

among many others). Importantly, the BBM is already implemented in the finite element

framework Lagamine, which is employed throughout this thesis, further justifying its se-

lection. Since the BBM is based on the Modified Cam-Clay model, it is necessary to first

describe the latter, which is done in the following section.

Modified Cam-Clay (MCC) model

The Modified Cam-Clay model, developed by Roscoe and Burland (1968), is an elasto-

plastic constitutive model widely employed in geotechnical engineering to simulate the

mechanical behavior of clays. The model is grounded on the assumption of a logarithmic

relationship between the mean stress p and the void ratio e, applicable both during virgin

isotropic compression (normal compression line) but also during isotropic unloading and

reloading, as shown in Figure 2.10.
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The normal compression line is mathematically expressed as:

e− e0 = −λ ln

(
p

pref

)
(2.4)

where λ represents the slope of the normal compression line (NCL), e0 is the initial void

ratio and pref denotes a reference stress. Concurrently, isotropic unloading and reloading

are characterized by:

e− e0 = −κ ln

(
p

pref

)
(2.5)

with κ denoting the slope of the unloading-reloading line, commonly known as the swelling

line.

The Modified Cam-Clay model’s yield surface takes the form of an ellipse in the p − q

plane, as illustrated in Figure 2.11. The yield function is defined by:

F = q2 +M2p (p+ pc) = 0 (2.6)

Here, pc denotes the preconsolidation pressure, controlling the extent of the yield sur-

face. Within the yield surface, the soil response is elastic, leading to only elastic strain

increments upon a change in stress.

Figure 2.10.: Slopes of the virgin isotropic consolidation line and swelling line
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Figure 2.11.: Yield surface of Modified Cam-Clay model after Brinkgreve et al. (2017)

The parameter M influences the height of the ellipse and corresponds to the slope of the

Critical State Line (CSL) in the p− q plane. The CSL intersects the yield surface at the

maximum q value, the CSL represents the stress states where the soil reaches the critical

state. Additionally, it divides the yield surface into two segments, the left side referred to

as the dry side and the right side as the wet side. During stress path crossings, the model

generates plastic strain increments. On the dry side, the soil exhibits softening associated

with dilatancy, while on the wet side, the response involves hardening accompanied by

compression.

Barcelona Basic Model (BBM)

The Barcelona Basic Model is an extension of the previously explained Modified Cam-Clay

Model (MCC) (Roscoe and Burland, 1968) and is a widely-used constitutive model for

unsaturated soils. It was first proposed by Alonso et al. (1990) and is since then extensively

applied in geotechnical engineering to predict the mechanical behavior of unsaturated soils

under various loading conditions.

The BBM incorporates key features of unsaturated soil behavior, such as the influence

of matric suction on the mechanical response and the coupling between hydraulic and

mechanical processes. The model is formulated in the p− q− s space, where p represents

the net mean stress, q the deviatoric stress and s the matric suction. The net mean stress

is defined as the difference between the mean total stress σt and the pore air pressure pa,
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while the matric suction represents the difference between the pore air pressure pa and

pore water pressure pw.

The BBM has been developed in a conventional elasto-plastic framework, with the yield

surface, illustrated in Figure 2.12, defined in the p− q − s space. In the p− q plane the

yield curve is called the Loading-Collapse (LC) curve and is characterized by a Modified

Cam-Clay type shape:

fLC = q2 −M2(p+ ps)(p0 − p) = 0 (2.7)

where M is the slope of the critical state line (CSL), p0 is the preconsolidation pressure

at the current suction level and ps denotes the left lateral boundary of the yield surface.

Within the elastic domain, changes in the net mean stress generate volumetric strains for

which the increment is given as:

dεev,p =
κ

1 + e

dp

p
(2.8)

where e is the void ratio and κ represents the slope of the unloading-reloading line, as

illustrated in Figure 2.13.

For changes in suction within the elastic domain the increment in volumetric strains is

calculated by:

dεev,s =
κs

1 + e

ds

s+ pa
(2.9)

where κs is the slope of the reversible wetting-drying line and pa is the air pressure.

Once the net mean stress p exceeds the preconsolidation pressure p0, plastic deforma-

tions are generated (see Figure 2.13). Incorporating the hardening law, the plastic strain

increment is given by:

dεpv =
λ(s)− κ

1 + e

dp0
p0

(2.10)

where λ(s) denotes the slope of the virgin consolidation line, which is formulated as a

function of suction:

λ(s) = λ(0)[(1− r)exp(−ωs) + r] (2.11)

The maximum stiffness of the soil (for an infinite suction) is linked to the parameter r,

while ω determines the rate at which the soil stiffness increases with suction.

Furthermore, the preconsolidation pressure p0 as well as the left lateral boundary of the

yield surface ps are suction-dependent as shown in the following:

p0(s) = pc

(
p∗0
pc

)λ(0)−κ
λ(s)−κ

(2.12)
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Figure 2.12.: Yield surface of the Barcelona Basic Model in p− q − s space after Alonso

et al. (1990)

where pc is a reference net stress and p∗0 is the preconsolidation pressure at saturated

conditions. And

ps(s) =
c0 + ks

tanφ
(2.13)

with the saturated cohesion c0, the friction angle φ and the parameter k which controls

the suction dependence of the cohesion.

The second yield curve is called the Suction-Increase (SI) curve and is defined in p − s

plane:

fSI = s = s0 (2.14)

where s0 is the threshold suction beyond which plastic deformations occur. The increment

of the corresponding volumetric strain is given by the following expression:

dεpv =
λs − κs
1 + e

ds0
s0 + pa

(2.15)

where κs is the slope of the virgin drying line.

The non-associated flow rule for the LC yield surface of the model is defined as:

gLC = αq2 −M2(p+ ps)(p0 − p) with (2.16)

α =
M(M − 9)(M − 3)

9(6−M)
· 1

1− κ
λ(0)

(2.17)
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Figure 2.13.: Compression curves for saturated and unsaturated soil (Alonso et al., 1990)

It is important to note that α in Equation 2.16 is not an independent parameter in the

model and is instead defined by Equation 2.17. This approach ensures zero lateral strain

for stress states corresponding to Jaky’s K0 values.

While the BBM is a robust and versatile constitutive model for unsaturated soils, capable

of capturing most key features, including changes in stiffness and shear strength with

suction, certain limitations can affect its performance in specific scenarios.

As an extension of the MCC model, the BBM inherits some of its limitations, such as the

inability to account for anisotropic behavior and viscous effects.

The BBM assumes a decrease in the slope of the normal compression line (NCL) with

increasing suction (r < 1), based on tests conducted on compacted low-plasticity kaolin

and a compacted sandy clay (Alonso et al., 1990).

According to Wheeler et al. (2002), experiments on compacted speswhite kaolin show an

increase in the slope of the NCL with increasing suction (r > 1). Wheeler et al. (2002)

highlight issues and possible solutions arising from r < 1, such as the necessity of using a

high reference stress pc > p∗0 and the challenges in determining pc.

Furthermore, the use of two intersecting yield surfaces in the BBM poses challenges for

numerical solutions, particularly in the intersection regions.
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Lastly, Dieudonne (2016) highlights the limitations in accurately predicting swelling pres-

sures during swelling pressure tests using the BBM. To address this, the Barcelona research

group incorporated suction- and/or stress-dependent elastic parameters (κ and κs) into

the BBM, resulting in the Barcelona Basic Model for Expansive Soils (BBMEx), which

will be explained in the following section.

Barcelona Basic Model for Expansive soils (BBMEx)

Following the original publication of the BBM, it was observed that swelling pressure

tests could not be satisfactorily modeled (Gens and Sánchez, 2010; Dieudonne, 2016).

Dieudonne (2016) reported unrealistically low swelling pressures for Febex bentonite,

when using BBM with constant elastic parameters (κ and κs). To address this limi-

tation, Garćıa-Fontanet (1998) extended the BBM to incorporate suction- and/or stress-

dependent elastic parameters κ and κs. These parameters are critical in controlling the

swelling pressure, and since swelling pressure tests involve changes in both suction and

pressure, incorporating a dependency of κ and κs on net mean stress p and suction s is a

reasonable approach.

The elastic parameter κ, giving the slope of the unloading-reloading line for changes in

mean net stress, is in the BBMEx suction dependent:

κ(s) = κ0

[
1 + α1 + α2 ln

(
s+ pa
pa

)]
(2.18)

where κ0 is the elastic stiffness in saturated conditions, α1 and α2 are model parameters.

Additionally, for the elastic stiffness κs, describing the slope of the wetting-drying line

during suction changes, was transformed into a function κs(p, s) considering net pressure

p and suction s:

κs(p, s) = κs0

[
1 + αp ln

(
p

pref

)]
exp(αs · s) (2.19)

where pref is the reference pressure and κs0, αp and αs are fitting parameters.

It has to be noted that the parameters α1, α2, αp, and αs introduced in the BBMEx

do not have a direct physical meaning. Instead, they are fitting parameters determined

through back-analysis of laboratory data. These parameters are calibrated by matching

the model to experimental results, allowing for an accurate representation of the observed

behavior in swelling pressure tests.
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2.3. Tunnel excavation in swellable clay shales

The tunnel excavation and long-term maintenance of tunnels in swellable clay shales is a

challenging task, and in the literature (Grob, 1972; Einstein, 1996; Steiner, 1993; Amstad

and Kovári, 2001; Butscher et al., 2016), many cases where tunnels were damaged due

to the swelling of the ground are reported. As the previous section already discussed

the swelling mechanisms and modeling approaches for swelling, this section will focus on

tunnel excavation in this type of ground.

Therefore, the following section presents the techniques relevant to tunnel excavation in

swellable clay shales, with particular emphasis on their application in these. Furthermore,

the numerical methods used in this thesis to model tunnel excavations are elaborated.

2.3.1. Tunnel excavation techniques

There are three primary tunnel excavation techniques, namely cut and cover, conventional

tunnel excavation, and mechanized tunnel excavation. As the cut and cover method is

only applicable to very shallow tunnels, this method is out of the scope of this thesis,

which is focusing on deep tunnel excavations in clay shales.

In these geological conditions only the conventional and the mechanized tunneling method

are relevant and both of them will be explained with focus on excavations in swellable

clay shales.

2.3.1.1. Conventional tunnel excavation

Conventional tunnel excavation methods, such as the New Austrian Tunneling Method

(NATM), involve the sequential excavation of small sections of the tunnel face, followed

by the immediate installation of support systems. The tunnel support typically consists

of a primary support, including shotcrete to stabilize the excavated walls and rock bolts

to secure the surrounding ground, a drainage system to reduce ground water pressure, and

a secondary lining made of concrete or reinforced concrete to provide permanent stability

and protection. According to Amstad and Kovári (2001), the NATM method has been

employed in several tunnel constructions in swellable formations.

In NATM, the highest and most critical swelling deformations are typically observed at

the tunnel invert (Amstad and Kovári, 2001).
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Figure 2.14.: Constructive measures in swellable rock (Kovári et al., 1987)

As a result, designs aimed at counteracting swelling primarily focus on the tunnel invert.

According to Kovári et al. (1987), four different support systems are suitable for swellable

rocks, as illustrated in Figure 2.14.

The first two approaches involve the installation of a rigid invert arch or an anchoring

system to suppress swelling-induced heave, although these approaches may lead to sig-

nificant swelling pressures. Another method uses a hollow invert, which creates a void

beneath the road slab of a road tunnel to accommodate the swelling pressure. The fourth

option involves a compressible layer, combining the advantages of the previous methods

by mitigating heave while controlling the development of swelling pressure within the

structure.

According to Kovári et al. (1987), water ingress into swellable rock is a critical factor,

as no swelling can occur without water. Additionally, the rate of water ingress, which

depends on the degree of damage to the ground, influences the ability to maintain the

tunnel’s design profile. Water ingress causes the rock to swell, which can lead to potential

damage, such as lifting of the open inner lining (invert arch only) before ring closure or

the failure of the outer lining before construction of the inner lining. Consequently, the

excavation tools used for the excavation play a crucial role.

An excavation method is considered rock-preserving if it does not significantly affect

the properties of the intact rock, particularly its strength and permeability. Non-rock-

preserving excavation loosens the rock surrounding the cavity, facilitating water inflow

in the invert area and potentially accelerating the swelling process. This affected area is

referred to in the literature as the excavation damaged zone (EDZ) and is discussed in

detail in Section 2.4 due to its critical importance.
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In conventional tunnel excavation, the cavity can be created using blasting, drilling, or

milling. Blasting is regarded as non-rock-preserving, whereas partial-face excavation ma-

chines are considered rock-preserving. Similarly, tunnel boring machines (TBMs), used

in mechanized tunnel excavation, are also classified as rock-preserving methods.

2.3.1.2. Mechanized tunnel excavation

Mechanized tunneling plays a crucial role in modern tunnel construction, offering an effi-

cient and reliable excavation method in different geological conditions. It provides several

advantages, including high excavation speed, profile accuracy, minimal impact on exist-

ing structures, enhanced safety for the workforce, environmentally friendly construction

methods (e.g. groundwater level increase, reduced noise), and the possibility of achieving

high-quality and cost-effective lining (Maidl et al., 2011).

TBMs consist of a cutterhead equipped with tools specifically designed for the type of

ground or rock to be excavated. Since clay shales exhibit high stability, support for the

tunnel face is generally not required. However, in cases where such support becomes

necessary, such as in non-cohesive soils, the tunnel face can be stabilized using a support

medium, such as bentonite slurry.

In mechanized tunneling, TBMs are categorized into shielded TBMs and open TBMs.

The latter use grippers to anchor themselves into the ground and steer the machine by

pushing against the unreinforced sides of the tunnel. The forward advancement is achieved

through hydraulic thrust cylinders that press the cutting head against the ground. Once

the maximum stroke of the jack forces is reached, the grippers must be repositioned.

Tunnel support in gripper TBMs is provided using steel reinforcement, shotcrete, and, if

necessary, rock bolts.

Open TBMs are suitable exclusively for stable ground, such as intact rock, where the

ground conditions allow for reliable anchoring and excavation without a protective shield.

According to Kovári et al. (1987), tunneling with an open TBM is unlikely to be signif-

icantly affected by swelling pressure or heave. However, problems may arise due to rock

softening. This was the case during the excavation of the pilot tunnel for the tunnel near

Kreuzlingen. In certain sections, the gripper plates could no longer anchor effectively,

reducing the advance rate to just a few meters per working day (Kovári et al., 1987).

In contrast, shield TBMs are primarily used in unstable ground conditions. The ex-

cavation steps for mechanized tunnel excavations using shield TBMs and selected cross

sections are illustrated in Figure 2.15. In this method, precast concrete segments, known
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as tubbings, are installed within the protection of a shield (cross section C-C), ensuring

stability and safety during excavation. Hydraulic thrust cylinders, located between the

tunnel lining and the thrust wall of the shield machine, advance the TBM during excava-

tion. To allow precise steering, the cutterhead diameter is slightly larger than the tunnel

lining diameter, also known as overcut (cross section B-B).

The gap between the tunnel lining and the surrounding ground behind the shield tail is

continuously injected with grout at the shield tail. The grout material prevents unwanted

soil ingress into the ring gap and ensures proper bedding of the tunnel lining within the

surrounding ground (cross section D-D). Depending on the requirements, various materials

can be used as grout, such as mortar, two-component grout, or pea gravel (Thewes and

Budach, 2009a,b).

These materials differ in their mechanical properties, application range, backfilling system,

and hardening time. By controlling the mixture, these properties can be optimized to suit

the geological conditions, e.g., a very rigid or a deformable mortar.

Figure 2.15.: Schematic representation of mechanized tunnel excavation
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The use of shield TBMs in swellable rock offers several advantages, according to Kovári

et al. (1987). These include high advance rates, mitigation of potential swelling-induced

heave at the tunnel face due to the weight of the cutterhead and the shield, and a short

ring closure time for the outer lining, achieved by installing the tubbings within the shield

tail. The primary risk when using a shield TBM in swellable rock is the jamming of the

shield due to swelling during excavation or during downtime. These risks can be mitigated

through preventive measures, such as selecting a shorter or more conical shield design or

increasing the bore diameter or overcut (Kovári et al., 1987). Due to these advantages,

this thesis focuses on mechanized tunneling using shield TBMs.

2.3.2. Numerical modeling of mechanized tunnel excavation

Mechanized tunnel excavation requires advanced numerical methods to simulate stress-

strain interactions and predict ground behavior (Möller, 2006). 2D and 3D finite element

methods (FEM) are commonly employed, with each approach offering specific advantages

depending on the complexity and focus of the simulation.

In 3D FEM, two primary approaches are commonly used: the single-step approach or the

step-by-step approach. The single-step approach simplifies the process by simultaneously

removing ground elements and activating lining elements along the entire tunnel length,

as described by Lee and Rowe (1991); Corbetta (1990); Anagnostou (2007).

The step-by-step approach, introduced by Hanafy and Emery (1980); Katzenbach and

Breth (1981) and further developed by others such as Hoefsloot and Verweij (2006), models

excavation incrementally in discrete steps, allowing for a more detailed representation of

the excavation sequence and the installation of linings. For both approaches, the specific

simulation details can vary depending on the focus of the analysis, e.g., consideration of

face pressure and grouting pressure. While 3D modeling of tunnel excavation enables

highly detailed simulations, it is computationally demanding, making 2D modeling a

popular alternative.

2D FEM simplifies the three-dimensional stress-strain behavior by approximating the ef-

fects of the missing third dimension. This can be achieved through the soil stiffness release

method (α-method), the lining reduction method (δ-method), and the stress reduction

method (β- or λ-method). The α-method reduces the stiffness of the soil located inside

the tunnel core to simulate the unsupported section of the excavation. The δ-method ac-

tivates the lining with reduced stiffness to account for load transfer. The β- or λ-method
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uses a staged reduction of the initial ground pressure, simulating the redistribution of

stresses during excavation.

While 2D methods are computationally efficient, they require calibration against real-

world measurement data (e.g., settlement profiles) or 3D FEM results to ensure reliability.

One common technique to incorporate 3D information into 2D models is the convergence-

confinement method, which will be detailed in the following section.

2.3.2.1. Convergence-confinement method

The convergence-confinement method (Panet, 1995) is a widely used approach in tunneling

engineering to predict the behavior of the ground and the support system during tunnel

excavation. The method is based on the β- or λ-method, where a pressure σ is applied

inside the tunnel wall, which is reduced when the TBM is approaching. In this method,

the stress σ is related to the natural state of stress σ0 by the equation:

σ = (1− λ)σ0 (2.20)

Here, the coefficient λ is called the deconfinement ratio or stress release ratio. The de-

confinement ratio λ will increase from no excavation (λ = 0) to full excavation (λ = 1).

This coefficient is derived from the Longitudinal Displacement Profile (LDP) and the

Ground Reaction Curve (GRC) illustrated in Figure 2.16. The former represents the evo-

lution of the radial displacement ur at the tunnel wall as a function of the distance x to

the tunnel face:

fLDP(ur, x) = 0. (2.21)

The relationship between the support pressure σ and the radial displacement ur at the

wall of the tunnel gives the ground convergence, represented by the Ground Reaction

Curve (GRC):

fGRC(σ, ur) = 0. (2.22)

The LDP can be obtained from settlement profiles along the tunnel excavation or derived

from a 3D simulation, while the GRC is derived from a 2D plane strain model. By linking

the LDP and GRC (fLDP = fGRC), the deconfinement ratio is now dependent on the

distance to the tunnel face λ(x). With knowledge of the excavation speed, the evolution

of λ(t) over time can be calculated.
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In the context of supported tunnel, the mechanical behavior of the support can be de-

scribed by the relationship between the stress at the outer face of the support σ and the

radial displacement ur:

fSCC(σ, ur) = 0 (2.23)

As the installed tunnel support needs some deformation to start limiting the tunnel con-

vergence, an unsupported distance L is considered as illustrated in Figure 2.16, where the

corresponding radial displacement is u0r. The equation for the support is then:

fSCC(σ, ur − u0r) = 0 (2.24)

The resulting curve is called the Support Confining Curve (SCC). The final static equi-

librium of the interaction between the ground and the tunnel support can be found by

solving the two equations (fGRC = fSCC), as shown in Figure 2.16.

The convergence-confinement method is developed analytically with restrictive assump-

tions, such as a tunnel with a circular section, full face excavation, homogeneous and

isotropic ground, and an isotropic state of natural stress, but has been used successfully

in Mousivand et al. (2017) for other cases as well.

According to Panet and Sulem (2022) the convergence-confinement method can be used

for tunnel excavation with anisotropic initial stress states, however it is assumed that the

deconfinement ratio λ is uniform around the tunnel.
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Figure 2.16.: Workflow of the convergence-confinement method
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2.4. Excavation Damaged Zone (EDZ)

As previously explained in Section 2.3, the Excavation Damaged Zone (EDZ) is a critical

factor for tunnel excavation in swellable clay shales, as it significantly influences water

transport in the vicinity of the tunnel. This, in turn, substantially affects the tempo-

ral evolution of swelling acting on the tunnel support. Thus, the EDZ is one of the

most important aspects of tunnel excavations in swellable clay shales and requires special

attention. Consequently, this section provides a detailed discussion of the EDZ.

Tunnel excavation induces stress redistribution, leading to the development of damage

in the surrounding material. Microcracks initiate upon surpassing the damage threshold,

accumulating and propagating as distributed damage, eventually forming larger intercon-

nected macrocracks. Two primary processes contribute to this phenomenon: (i) stress-

induced microcracking in the short term and (ii) time-dependent microcracking that often

develop in the long term (Golshani et al., 2007).

The damaged region, identified as the EDZ, experiences deformations and alterations in

the hydro-mechanical properties of the clay shale. These alterations, including increased

permeability and strength reduction, can pose challenges to tunnel safety, underscoring the

importance of a comprehensive investigation into the short-term and long-term behavior

of the rock within the EDZ.

According to Blümling et al. (2007), the geometry of the EDZ is influenced by various

factors, such as the stress anisotropy, material anisotropy, the presence of natural fracture

zones, tunnel geometry, and interactions between tunnel support and ground. In hard

and brittle clays, discrete features in the EDZ result from short-term excavation-induced

unloading, primarily exhibiting extensional or tensile failure, whereas weaker rocks or soft

clay shales may experience shear failure instead. Anisotropic rocks may activate planes

of weakness, leading to either extensional or shear failure (Blümling et al., 2007).

According to Blümling et al. (2007), within the EDZ, stress redistribution may lead to

localized consolidation and swelling in the post-closure phase. For example, in regions of

tangential stress concentration, the maximum stress may exceed the previous overconsol-

idation stress, causing the material to behave more like a normally consolidated sediment

rather than an overconsolidated one. In unloaded areas, suction may attract moisture,

leading to localized swelling of the materials.

The Mont Terri Underground Research Laboratory (URL) in Switzerland, focusing on

Opalinus Clay for potential nuclear waste disposal, serves as a significant facility for EDZ
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investigation (Bossart et al., 2002). The fractures under investigation were sampled using

resin-injected overcores from the EDZ, yielding valuable data on fracture orientations,

frequencies, and the extent of the EDZ.

To determine the hydraulic properties of these fractures, including permeability and trans-

missivity, pneumatic and hydrogeological tests were conducted. The synthesis of these

data concluded in the development of a conceptual model for the EDZ in the Opalinus

Clay, leveraging insights gained from observations at the Mont Terri URL as illustrated

in Figure 2.17.

The conceptual model illustrates a plastic deformed zone extending a distance equivalent

to the tunnel’s radius. This zone is further divided into two regions: an inner zone

spanning 0.5 r (f1), characterized by an air-filled interconnected fracture network, and

an outer zone (f2) dominated by a partially saturated and isolated fracture network,

both highlighted in Figure 2.17. Within the inner zone (f1), intrinsic permeability k0 is

significantly higher compared to the undisturbed rock k0, particularly within the initial

0.2 r distance from the tunnel wall. In contrast, the outer zone (f2) exhibits considerably

lower permeability evolution k
k0

compared to the inner zone. This comprehensive model

enhances our understanding of fracture network characteristics and permeability changes

within the EDZ in the Opalinus clay shale.

Figure 2.17.: Conceptual model of fracture network and permeability evolution within the

EDZ in OPA after Bossart et al. (2002)
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In the study conducted by Perras and Diederichs (2016), the Excavation Damaged Zone

(EDZ) was categorized into four distinct zones, each reflecting varying levels of damage

resulting from excavation activities, as depicted in Figure 2.18. These zones contribute

to the understanding of the modeled fracture network and permeability evolution within

the EDZ in Opalinus clay shale. The identified zones are as follows:

• Construction Damaged Zone (CDZ): CDZ is characterized by damage caused

by construction methods, particularly the excavation process itself. The degree

of damage in this zone can potentially be influenced and reduced by adjusting or

altering construction techniques.

• Highly Damaged Zone (HDZ): HDZ represents the initial and unavoidable con-

sequences of excavation, featuring interconnected macro-fractures within the rock

mass. These fractures result from changes in geometry, structural alterations, and

induced stress changes.

• Excavation Damaged Zone (EDZ): EDZ encompasses varying levels of damage

and connectivity, including the HDZ and further subdivisions. This zone provides

insights into the complex network of fractures and changes in the rock structure

induced by the excavation process.

• Excavation Influenced Zone (EIZ): EIZ is characterized by primarily elastic

changes and lies beyond the EDZs. It represents a transitional region between

excavation-induced changes and undisturbed rock, primarily experiencing alter-

ations in stress and strain rather than significant damage.

Ensuring precise modeling of hydro-mechanical interactions within the EDZ is essential

for designing and ensuring the safety of underground structures. The following section

describes different approaches for modeling the EDZ.

Figure 2.18.: Various damaged zones around the excavation (Perras and Diederichs, 2016)
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2.5. Modeling approaches for the EDZ

The prediction of the Excavation Damaged Zone (EDZ) and its fracture structure is

critical for tunneling in swellable clay shales, particularly regarding the long-term safety

and stability of deep excavations. Various methods have been employed in the literature

to determine the extent and characteristics of the EDZ.

Empirical and analytical methods, as utilized by researchers such as Tao et al. (2019);

Xu et al. (2022); Martin et al. (1999); Diederichs (2007); Perras and Diederichs (2016),

provide straightforward approaches and reasonable estimations of the EDZ. These models

relate EDZ size to the tunnel radius and rely on various assumptions, such as employing

the Mohr-Coulomb or Hoek-Brown failure criteria, or integrating UCS (Uniaxial Com-

pressive Strength) or CI (Crack Initiation) values with the actual stress state. However,

for complex tunnel-ground interactions, numerical methods are generally more suitable.

Numerical approaches encompass diverse techniques, each with unique capabilities. The

Discrete Element Method (DEM), employed by Shen and Barton (1997); Zhao et al.

(2020); Farahmand and Diederichs (2021); Dedecker et al. (2007), models joints and frac-

tures in rock masses by representing the rock as discrete particles. This method excels

in capturing the discrete nature of fractures and joint behavior, particularly in heavily

fractured or jointed rock masses. However, its particle-based nature typically demands

high computational resources compared to other methods.

Conversely, the Finite Element Method (FEM) offers advantages in simulating rock masses

with advanced constitutive models, though it cannot directly model discrete fractures.

FEM is widely applied in EDZ simulations using damage models (Golshani et al., 2007;

Arson and Gatmiri, 2012; Mader et al., 2022; Xu and Arson, 2014) or strain localization

techniques (Pardoen, Levasseur and Collin, 2015; Levasseur et al., 2013; Bertrand and

Collin, 2017). Damage models simulate gradual material degradation, capturing the evo-

lution of damage within the rock mass. In contrast, strain localization techniques are

particularly suited to modeling localized deformation zones, such as shear bands.

Hybrid approaches, such as the Hybrid Finite-Discrete Element Method (FDEM), com-

bine the strengths of DEM and FEM. These methods allow FEM to model intact rock

masses while enabling DEM to capture discrete fractures and joint behavior. Studies like

Lei et al. (2017) and Lisjak et al. (2016) highlight the utility of FDEM for complex fracture

scenarios. However, the computational demands and specialized software requirements of

hybrid approaches make them less practical for this thesis.
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Given the complexity of tunnel excavation and the need for computational efficiency,

this thesis adopts FEM. Among the FEM techniques, strain localization methods are

selected due to their flexibility in incorporating constitutive models tailored to the swelling

behavior of clay shales, due to the independence of a specific constitutive law.

To justify this choice, the following section elaborates on the significance of strain local-

ization, demonstrating its occurrence in geomaterials both at the laboratory scale and in

tunnel-scale applications.

2.6. Shear strain localization in geomaterials

In the context of geomaterials, localized deformations occur in a variety of forms, span-

ning from simple cracks to multiple fault planes. This diversity is particularly evident in

geotechnical contexts like boreholes and tunnels. While some instances of failure demon-

strate a diffuse pattern, the majority involve localized strains within specific shear bands,

ultimately culminating in the creation of rupture zones (Salehnia, 2015).

It’s widely acknowledged that materials often undergo localized damage before experi-

encing complete rupture. Initially, stress redistribution disperses damage throughout the

material, which gradually concentrates over time. Once the damage threshold is sur-

passed, microcracks initiate, propagate, and coalesce, spreading throughout the material.

The cumulative effect of distributed damage intensifies strain localization, prompting the

initiation of interconnected fractures and the eventual development of macrocracks, lead-

ing to abrupt material rupture (Diederichs, 2003).

Fracture mechanics defines various fracture modes, including tensile (mode I), sliding

shear (mode II), tearing shear (mode III), and a mixed mode (mode I-II) as illustrated in

Figure 2.19 (Jenq, 1988). In tunnel excavation scenarios, clay shales commonly experience

fracturing, primarily through shear fractures in mode II (Pardoen, 2015). Therefore, shear

strain localization serves as a critical indicator of the fracturing process. Although the

modeling approach for shear strain localization is continuous and does not explicitly depict

fractures and their discontinuities, it often results in the formation of shear bands and

non-uniform strain fields, leading to discontinuities in material displacement on both sides

of a shear band (Pardoen, 2015).

After introducing shear strain localization, it becomes essential to explore practical ex-

amples of this phenomenon in geomaterials. Experimental studies provide compelling

evidence of these localized strains, offering insights into how geomaterials behave under
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Figure 2.19.: Different fracture modes (Pardoen, 2015)

varying conditions, thereby bridging the gap between theory and practice. The subse-

quent sections will delve into experimental evidence of strain localization at both small

and large scales.

2.6.1. Small-scale evidence of strain localization

In the past five decades, strain localization has been extensively investigated through

various laboratory tests, including biaxial tests (Vardoulakis et al., 1978; Han and Var-

doulakis, 1991; Finno et al., 1996, 1997; Desrues, 1984; Alshibli et al., 2003; Desrues and

Viggiani, 2004; Mokni and Desrues, 1999; Roger et al., 1998; Tatsuoka et al., 1986, 1990),

hollow cylinder tests (Labiouse et al., 2014), triaxial tests (Desrues et al., 1996; Bésuelle

et al., 2000; Yu et al., 2012; Lenoir et al., 2007), and direct shear tests (Arthur et al.,

1977). Various techniques, such as stereophotogrammetry, 3D digital image correlation,

X-ray microtomography, and scanning electron microscopy (SEM), have been employed

to visualize and analyze the development of shear bands in geomaterials (Desrues, 2005).

The collective findings from these laboratory experiments, as synthesized by Desrues

(2005), reveal several key insights. Firstly, strain localization in the form of shear bands

commonly occurs in most laboratory tests, ultimately leading to material rupture as

illustrated in Figure 2.20.
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Figure 2.20.: Shear bands in sand specimen during biaxial testing (Alshibli et al., 2003)

The observed localization patterns can exhibit complexity, influenced by factors such as

specimen geometry and loading conditions. Notably, well-defined stress peaks in stress-

strain curves often serve as indicators of an established shear band system within the

specimens.

Furthermore, investigations conducted on materials like loose and dense Hostun sand

under plane strain undrained conditions have highlighted distinct localization patterns.

Particularly in dense (dilatant) sand specimens, the occurrence of localization is contin-

gent upon cavitation phenomena in the pore fluid.

By elucidating the existence and characteristics of shear bands through laboratory-scale

experimentation, researchers have laid the groundwork for understanding these phenom-

ena in real-world scenarios. The subsequent section will delve into the manifestation of

shear bands in in-situ experiments, further bridging the gap between laboratory observa-

tions and field applications.

2.6.2. Large-scale observation of strain localization

In addition to small-scale observations of strain localization in the laboratory, there are

also larger-scale observations, such as strain localization in railway tracks following earth-

quakes or during tunneling or drilling. Due to the fact that the EDZ, as a result of tunnel

excavation, is the focus of this thesis, this section is limited to in situ observations within

the context of tunneling or drilling.
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As discussed in Section 2.4, the excavation process induces stress redistribution, leading

to the formation of the Excavation Damaged Zone (EDZ), where the hydro-mechanical

properties are altered. The significance of the EDZ extends beyond road and railway

tunnel excavations to include nuclear waste repositories, where stricter regulations and

significantly longer maintenance periods must be considered. Due to the high risks as-

sociated with the disposal of radioactive waste, numerous field observations have been

conducted to analyze the EDZ. Notably, in three major European underground labora-

tories dedicated to nuclear waste disposal in clay shales, strain localization phenomena

have been observed. These laboratories include the Bure underground research labora-

tory operated by the French National Radioactive Waste Management Agency (ANDRA),

where the host rock is the Callovo-Oxfordian (COX) clay; the HADES underground re-

search laboratory managed by the Belgian Agency for Radioactive Waste and Enriched

Fissile Materials (NIRAS/ONDRAF), situated in the Boom Clay; and the Mont Terri

Underground Laboratory overseen by the Swiss National Cooperative for the Disposal of

Radioactive Waste (NAGRA), where the host rock is Opalinus Clay.

To gain insight into the fracture patterns encountered during tunnel excavation, small-

scale field tests involving borehole drilling in the host rock formation are often conducted.

Figure 2.21 displays the herringbone structure of fractures observed in a COX borehole

core at the Bure Underground Research Laboratory, induced by the drilling process.

A similar pattern is evident in Figure 2.22 for a Boom Clay borehole at the HADES

Underground Research Laboratory. Additionally, Figure 2.23 shows combined shear-

extensional fracturing around a borehole in Opalinus clay.

Figure 2.21.: Fractures pattern along a COX borehole core induced by the drilling process

(Wileveau and Bernier, 2008)
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Figure 2.22.: Fractures pattern along a Boom Clay borehole core induced by the drilling

process (Wileveau and Bernier, 2008)

Figure 2.23.: Eye shaped combined shear-extensional fractures around a borehole in OPA

(Thury and Bossart, 1999)

Transitioning to observations from actual tunnel excavations, similar phenomena were

noted at the HADES Underground Research Facility. Stress redistribution led to the for-

mation of shear-induced fractures both in the excavation front and on the tunnel sidewalls,

as depicted in Figures 2.24 and 2.25.

By combining the fracture patterns obtained from borehole drilling with those observed

during tunnel excavation, an idealized representation of the excavation-induced fracture

network can be derived, as illustrated in Figure 2.26. According to Bastiaens et al. (2003),

the observed fracture pattern typically comprises two main conjugated localized shear

planes: one in the upper part, dipping towards the excavation direction, and the other in

the lower part, dipping in the opposite direction. These fracture planes intersect at the

mid-height of the gallery and exhibit curvature at their intersection with the vertical and

horizontal planes passing through the gallery axis.
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Figure 2.24.: Fractures observed on the sidewalls (Connecting Gallery) at the HADES

URF (Van Marcke and Bastiaens, 2010)

Figure 2.25.: Fractures observed on the excavation front (Praclay Gallery) at the HADES

URF (Van Marcke and Bastiaens, 2010)

This curvature is more pronounced vertically than horizontally due to the anisotropic

stresses in the clay, with vertical stress exceeding horizontal stress.

Experimental and field observations offer valuable insights into strain localization, but

both approaches face challenges that limit their ability to fully capture the complexities

of the EDZ. Laboratory tests often require intact rock samples, which can be difficult to
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Figure 2.26.: Schematic representation of fracturing pattern modified from Bastiaens et al.

(2003)

obtain, especially in weak or fractured rocks. Advanced techniques like stereophotogram-

metry, 3D digital image correlation, X-ray microtomography, and scanning electron mi-

croscopy (SEM) are employed to visualize strain localization in the laboratory. While

these methods provide high-resolution observations of deformation and microstructural

changes, they are often constrained by sample size.

Field monitoring, in contrast, lacks access to these advanced imaging tools and typically

relies on visual assessments or basic instrumentation. The heterogeneous nature of the

rock mass and the inaccessibility of excavation zones further hinder the visualization of

the EDZ’s spatial extent and development.

To address these limitations and provide a comprehensive understanding across various

conditions, computational modeling becomes a crucial tool. Simulating complex scenarios

allows for a detailed analysis of strain localization, complementing experimental and field

studies while offering predictions for conditions that may be difficult or impossible to repli-

cate physically. The subsequent section will explore the methodologies and applications

of computational modeling for strain localization.
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2.7. Computational modeling of strain localization

Before discussing the challenges in computational modeling of strain localization with the

support of regularization techniques in the subsequent section, it is essential to provide

an explanation of the relevant theoretical concepts. These concepts are fundamental in

the field of computational modeling, building the foundation for a comprehensive un-

derstanding of the challenges and approaches involved. In the context of computational

modeling of strain localization, two main theoretical concepts are particularly significant:

the bifurcation phenomenon and the Rice criterion.

2.7.1. Bifurcation phenomenon

From a theoretical perspective, strain localization is often conceptualized as a bifurcation

phenomenon, indicating loss of a unique solution to a problem. This notion has been

explored in studies by Rice (1976) and Chambon and Caillerie (1999). Although, the

concept of bifurcation can manifest in various forms (e.g., diffused loss of homogeneity

(Vardoulakis, 1981), surface wave (Triantafyllidis, 1980), or shear banding (Rice, 1976)),

this study focuses on understanding strain localization in the shear band mode.

In numerical analysis, the conditions leading to the onset of localization are determined

by identifying a critical point where the constitutive equations of the material suggest

the potential for a bifurcation. At this critical point, the deformation becomes locally

concentrated into a shear band. The occurrence of the bifurcation phenomenon in uniaxial

compression tests is depicted in Figure 2.27.

Here, the absence of a distinct solution can result in the emergence of shear bands from

various potential localized solutions. Upon observing a discontinuity in the material,

elastic unloading occurs outside the shear band, while the material within the shear

band undergoes plastic loading deformation. The post-peak response, as highlighted in

Figure 2.27, is characterized by the degree of softening, represented by the comparison of

the shear band thickness Hs to the complete height of the specimen H. Such conditions

may introduce strong discontinuities, evident as very thin bands.

It is crucial to distinguish between instability and bifurcation, where the instability implies

that minor initial perturbations amplify over time, as postulated by Lyapunov (1992),

while bifurcation signifies the absence of a singular solution for a specified boundary

problem, as described by Rice (1976) and Sulem (2010). This situation arises at a specific

point in the physical process where an alternate solution emerges alongside the primary
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Figure 2.27.: Relationship between shear band thickness and post-peak response in a

uniaxial compression test (Thakur, 2007).

solution for subsequent loading phases, leading to an abrupt shift in the deformation

mode, such as deformation localized within a planar zone. Essentially, this represents the

non-uniqueness of the solution due to the inherent instability in the material.

2.7.2. Rice criterion

Following prior works by Hadamar (1904); Hill (1958); Mandel (1966), a criterion for strain

localization, specifically in shear band mode, was introduced by Rudnicki and Rice (1975)

and Rice (1976). This theory analyzes conditions under which a system might transit from

a homogeneous state of deformation to a localized state within a planar band. Figure 2.28

presents a theoretical scheme illustrating a shear band, distinguishing between variables

outside (superscript 0) and inside the shear band (superscript 1). This criterion relies on

a kinematical condition, a static condition, and the constitutive equation.

The kinematic condition evaluates the possibility of a non-homogeneous solution within

the shear band by ensuring continuity in the velocity field vi (x) as the band forms.
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Figure 2.28.: A conceptual representation of the bifurcation within a localized shear band

(Salehnia, 2015)

Mathematically, the strain jump across the band interface is represented as:

ε̇1ij = ε̇0ij +
1

2
(ginj + gjni) (2.25)

where, ε̇ij, given by the symmetry of ∂vi
∂xj

, represents the deformation rate, while the vector

g, defined by g(xini), is arbitrary and oriented based on its direction and magnitude as

it transverses the band, and ni is the normal unit vector to the shear band.

The static condition ensures equilibrium at the band’s interface, maintaining consistent

stress rates inside and outside the band:

nj(σ̇
1
ij − σ̇0

ij) = 0 (2.26)

The constitutive equation relates the stress rate to the strain rate through a constitu-

tive tangent tensor Cijkl. At the onset of bifurcation, the material’s state is assumed

homogeneous across the band, given by:

σ̇ij = Cijklε̇kl (2.27)

When different constitutive tensors are assumed inside and outside the band (discontinu-

ous bifurcation), combining Equation 2.27 with Equations 2.25 and 2.26, the bifurcation

condition is expressed as:

C1
ijkl

(
ε̇0kl +

1

2
(gknl + glnk)

)
nj = C0

ijkl

(
ε̇0kl

)
nj (2.28)

The resulting equation system is a third-order system where the unknown is the vector g.

The trivial solution, when g = 0, is possible, but leads to a uniform deformation without
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shear band forming (see diffuse failure in Figure 2.27). For a non-trivial solution g ̸= 0,

the differences between the constitutive tensors inside and outside the band make the so-

lution quite complicated. However, it has been demonstrated that continuous bifurcation,

with continuous constitutive tensor along the shear band, always leads to discontinuous

bifurcation. Therefore, by assuming continuous bifurcation:

C1
ijkl = C0

ijkl = Cijkl (2.29)

non-trivial solutions can be found when the determinant of the acoustic tensor is less than

or equal to zero (Hill, 1958):

det[ni · C1
ijkl · nj] ≤ 0 (2.30)

The equation’s solution determines the direction of the shear band, indicating potential

multiple orientations rather than a single predefined direction. Theories regarding shear

band orientation vary. Coulomb’s criterion (Coulomb, 1773) suggests alignment with the

maximum shear stress, corresponding to the maximal obliquity line of the stress vector.

This implies the shear band’s orientation is π
4
± φ

2
relative to the principal directions of

the total stresses, with φ denoting the friction angle.

However, experiments often demonstrate that shear planes follow zero extension lines,

influenced by the dilatancy angle ψ (Desrues, 1984). According to this perspective, the

shear band’s orientation is π
4
± ψ

2
with respect to the principal directions of the strain

rate. The debate on whether shear bands follow maximal obliquity or zero extension

lines introduces uncertainties in their direction (Pardoen, 2015). It is suggested that

shear band orientation may vary between these theories, largely determined by the initial

strain localization and tends to remain consistent during propagation. Additionally, this

orientation is influenced by the friction and dilatancy angles present at the bifurcation

state.

2.7.3. Regularization methods

Strain localization, characterized by discontinuities in strain rate and the emergence of

localized shear bands, presents a significant challenge for modeling due to the inherent

mesh dependency issues in classical finite element models (Collin et al., 2009). These

challenges underscore the necessity for regularization methods that incorporate an internal

length scale to effectively represent post-localization behavior without mesh dependency.
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Various regularization methods have been proposed in the literature, broadly categorized

into two main groups: enrichment of the constitutive law and enrichment of the kinemat-

ics.

Enrichment of the constitutive law:

One possibility is to introduce an internal length scale at the level of the constitutive

model. The advanced analysis of localization phenomena has shown that constitutive

equations with internal length are necessary to properly model the experimental results

involving some localized patterns. Two well known groups of models are the non-local

models and gradient plasticity.

The non-local approach (e.g., Pijaudier-Cabot and Bažant (1987); Peerlings et al. (2001))

ensures that a material’s response at a given location depends not only on its immediate

state but also on the states of its surrounding areas. This method employs integral

equations over specific domains, introducing a defined material length scale to mitigate

mesh dependency. However, it does not directly account for microstructural effects in its

formulations.

On the other hand, gradient plasticity models (e.g., Aifantis (1984); De Borst and Mühlhaus

(1992); Peerlings et al. (1996)) introduce gradients of internal variables into constitutive

equations, providing flexibility by incorporating gradient variables into the yield function

or plasticity flow rule. While this approach allows for adaptability to various materials

and behaviors, it can be computationally complex and requires careful calibration.

Enrichment of the kinematics:

The previous approaches, which enrich the constitutive law, introduce the effect of mi-

crostructure through non-local or gradient terms, yet the microstructure itself remains

imprecisely defined. Therefore, the enrichment of classical kinematics with additional de-

scriptions of microstructure kinematics, resulting in a microstructure continuum medium,

is another possibility. One of the first and well-known models of this group, is the Cosserat

model (Cosserat and Cosserat, 1909), which introduces additional rotational degrees of

freedom in addition to the classical continuum displacements. The Cosserat model is par-

ticularly relevant for granular media. However, this model may encounter challenges in

prescribing microrotation boundary conditions and lacks broader applicability (Toupin,

1962; Mindlin, 1964).

In contrast, the second gradient model (Chambon et al., 1998, 2001), stemming from

the works of Toupin (1962), Mindlin (1964) and Germain (1973), offers a detailed view

of continuum mechanics by considering both macro- and micro-kinematics. This model
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distinguishes between macro-deformation and micro-deformation, providing insights into

the individual motion of microstructural elements. Despite introducing computational

challenges related to secondary gradients, it excels in achieving a balanced approach

between computational feasibility and physical accuracy.

In this research, the local second gradient method is used, as this method maintains local

constitutive equations, offering a straightforward formulation of a second gradient exten-

sion applicable to most classical constitutive models. Further details on the numerical

framework of this specific model are discussed in the subsequent section.

2.7.4. Framework of the coupled local second gradient model

In the subsequent section, the fundamentals of the second gradient model are elaborated.

This encompasses the essential balance equations, necessary assumptions, and the mi-

crokinematic constitutive equations.

2.7.4.1. Balance equations of the coupled local second gradient model

In a classical continuous medium, a material particle with volume Ω is characterized at the

macroscopic scale by its displacement field ui. The classical kinematic fields are described

as the macro-deformation field:

Fij =
∂ui
∂xj

(2.31)

The macro-strain and macro-rotation fields, which are the first gradients of the displace-

ment field, are given by the symmetric and antisymmetric components of Fij, respectively,

as:

εij =
1

2
(Fij + Fji) (2.32)

rij =
1

2
(Fij − Fji) (2.33)

Toupin (1962) and Mindlin (1964) introduced the concept of materials with microstruc-

ture. Within this framework, a macro-volume Ω is made up of several microscale particles

Ωm, represented as micro-volumes Ωm embedded within the macro-volume Ω, as illustrated

in Figure 2.29. The micro-displacement field umi is established independently from the

macro-displacement ui, with its gradient defined as:

υij =
∂umi
∂xj

(2.34)
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(a) Initial configuration (b) Deformed configuration

Figure 2.29.: Kinematics of microstructure continuum highlighting the microstructure’s

relative movement

The micro-deformation field is uniform within the micro-volume Ωm but shows non-

homogeneity within the macro-volume Ω. The symmetric and antisymmetric components

of υij correspond to the micro-strain and the micro-rotation, respectively, as given by the

Equations 2.35 and 2.36:

εmij =
1

2
(υij + υji) (2.35)

rmij =
1

2
(υij − υji) (2.36)

Furthermore, the micro second gradients, has been introduced and defined as follows:

hijk =
∂υij
∂xk

=
∂2umi
∂xj∂xk

(2.37)

The microstructure’s relative deformation is expressed by the difference between the macro

and micro-deformation fields:

εij = Fij − υij (2.38)

Based on the previously explained microstructure effects within an enriched continuum,

Chambon et al. (2001) postulated the local second gradient model for monophasic con-

tinua. Subsequently, Collin et al. (2006) extended the model from monophasic to biphasic.

With respect to the classical continuum mechanics, additional terms needed to be added

in the internal virtual work of a given body Ω (Germain, 1973):

W ∗
int =

∫
Ω

(
σij
∂u∗i
∂xj

− τijε
∗
ij + Σijkh

∗
ijk

)
dΩ (2.39)

Here, σij is the Cauchy stress tensor, while the term τij is an additional stress linked to

the microstructure, often referred to as the microstress. In addition, h∗ijk is the virtual

micro second gradient (refer to Equation 2.37). ε∗ij is the virtual relative deformation of
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the microstructure (as outlined in Equation 2.38). Lastly, Σijk is the double stress, dual

of the virtual micro second gradient, which necessitates an additional constitutive law, as

elaborated in Section 2.7.4.2.

The external virtual work is defined as:

W ∗
ext =

∫
Γσ

(tiu
∗
i + T iDu

∗
i ) dΓ (2.40)

where ti is the classical external traction force per unit area, while T i represents an

additional external double force per unit area. Both are acting on a segment Γσ of the

boundary of Γ (see Figure 2.30).

One major assumption of the local second gradient model is the absence of relative

deformation of the microstructure, εij = 0, implying equality between the micro- and

macrokinematic gradients Fij = υij (refer to Equation 2.38). When analyzing the prob-

lem using finite element methods, Ch−1 functions are typically considered within a finite

element, with h denoting the highest order of derivation in the virtual work relation. Due

to the second derivative of the virtual displacement field in the formulation, C1 functions

need to be used. As the direct integration of C1 functions poses notable numerical chal-

lenges, an alternative approach is employed in the fine element formulation. Therein, C0

functions along with a field of Lagrange multipliers, symbolized as λij, are used (Chambon

et al., 1998; Salehnia, 2015).

Consequently, the governing Equations for the local second gradient model are as follows:∫
Ω

(
σij
∂u∗i
∂xj

+ Σijk

∂υ∗ij
∂xk

− λij

(
∂u∗i
∂xj

− υ∗ij

))
dΩ =

∫
Γσ

(tiu
∗
i + T iυ

∗
iku⊥,k) dΓ (2.41)∫

Ω

λ∗ij

(
∂ui
∂xj

− υij

)
dΩ = 0 (2.42)

In the context of coupled hydro-mechanical analyses, the local second gradient model

incorporates the mass balance of the fluid (water) phase, as detailed in Equation 2.43, for

every kinematically admissible virtual pore water pressure field p∗w (Collin et al., 2006).

The assumption made here is that the fluid has no effect on the microstructure, which

implies that there is no relationship between the double stress Σijk and the pore water

pressure pw. ∫
Ω

(
Ṁwp

∗
w −mw,i

∂p∗w
∂xi

)
dΩ =

∫
Ω

Qwp
∗
w dΩ−

∫
Γq

qwp
∗
w dΓ (2.43)

In Equation 2.43, mw,i represents the water mass flow, Ṁw denotes the change in water

mass, Qw acts as a sink term, and Γq specifies the boundary segment where the input

water mass per unit area qw is prescribed (refer to Figure 2.30).



2.7. Computational modeling of strain localization 55

Figure 2.30.: Boundary conditions and the current configuration of the material for the

second gradient model

Using Darcy’s law, the water mass flow is defined as:

mw,i = −ρw
kw,ijkr,w
µw

∂pw
∂xj

(2.44)

where ρw represents the water density, kw,ij is the intrinsic hydraulic permeability tensor,

kr,w signifies the relative water permeability that varies based on the water’s degree of

saturation, and µw stands for the water dynamic viscosity. The water mass Mw is defined

as:

Mw = ρwnSr,wΩ (2.45)

where Sr,w is the degree of saturation of water and n is the material porosity.

2.7.4.2. Second gradient constitutive equation

As mentioned in the previous section, a constitutive law is required to describe the re-

lationship between the double stress and the microkinematics. This relationship is con-

sidered to be independent of both the conventional constitutive model of the macro scale

(first gradient model) and the pore water pressure. Due to the limited information about

the relationship between double stress and micro-deformation and the complexity of gath-

ering this information at microstructure level, a linear elastic mechanical law has been

selected in the local second gradient model for its inherent simplicity. It is based on an

isotropic linear relationship proposed by Mindlin (1964):

Σ̃ijk = Dijklmn
∂υ̇lm
∂xn

(2.46)
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In consequence of the unclear physical interpretation of the material parameters within

Dijklmn, a more straightforward approach with only one parameter D was suggested by

Matsushima et al. (2002). Expressed for two-dimensional problems, the linear elastic

mechanical law introduced by Matsushima et al. (2002) can be written as:
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(2.47)

The constitutive elastic modulus D in Equation 2.47 represents the physical microstruc-

ture and the internal length scale that defines the shear band width (Kotronis et al.,

2007).

2.8. Intrinsic hydraulic permeability evolution

As already highlighted in Section 2.4, the EDZ is a zone with increased permeability due

to the occurrence of fractures. This is from special interest when dealing with swelling

clay shales, as the water transfer due to the elevated hydraulic permeability in the EDZ

might trigger the swelling process within the clay shale formation. The amount of the

swelling is a crucial design parameter for the choice of the tunnel support system.

Therefore, in this section several possible methods to model that hypothetical permeability

increase within the EDZ are discussed. Although the discrete modeling of the fracture flow

allows in theory a good representation of the in situ behavior, only continuous approaches

are discussed in the following, to be in line with the chosen EDZ modeling approach.

Furthermore, since no damage model is applied in this study, the possibilities of linking

the permeability evolution to the damage parameter (e.g., Levasseur et al. (2013)) have

not been set in focus of this work.

A well-known and frequently used approach is the Kozeny-Carman relationship (Kozeny,

1927; Carman, 1997), which links the intrinsic hydraulic permeability kw,ij to the porosity

ϕ given by:

kw,ij = kw,ij,0
(1− ϕ0)

2

ϕ3
0

ϕ3

(1− ϕ)2
(2.48)
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where kw,ij,0 represents the initial intrinsic water permeability, while ϕ0 and ϕ denote the

initial and current porosity, respectively. According to Chapuis and Aubertin (2003) this

relationship is approximately valid for sands, but not for clay materials. Furthermore, us-

ing a porosity dependent relationship as the Kozeny-Carman relationship, a permeability

increase is only possible for material with pronounced dilative behavior, which has to be

considered for the choice of the permeability evolution approach.

Another commonly used approach is the cubic law. By assuming that the flow within a

single crack is equivalent to a laminar flow between to two parallel plates, using Darcy’s

law, the permeability parallel to the fracture plane can be estimated as (Levasseur et al.,

2010):

k =
b2

12
(2.49)

where b is the hydraulic aperture or in other words, the crack width.

Following the above equation, the permeability of a medium with a set of parallel fractures

can be represented by a cubic law (Levasseur et al., 2010; Snow, 1969; Liu et al., 1999;

Wittke, 2014; Witherspoon et al., 1980):

km =
b3

12B
(2.50)

where B is the spacing between each single crack.

According to Wittke (2014) the mean aperture cannot be determined with available lab-

oratory testing protocols and must be therefore estimated, which results in a high uncer-

tainty. Furthermore, Wittke (2014) demonstrates that using the cubic law (Equation 2.50)

but changing the mean aperture from 0.2 mm to 1 mm the resulting permeability will

vary from a permeability being typical for a fine sand (B=0.2 mm) to a value being

representative of gravel (B=1 mm).

Another limiting factor of this simple cubic model is, that it can not consider rough walls

or variable apertures, therefore the use of this model is not appropriate (Levasseur et al.,

2010). However, it serves as a basis for more sophisticated models which include the

stress state (e.g., normal or shear stress (Wittke, 2014; Levasseur et al., 2010; Pardoen,

Levasseur and Collin, 2015)).

When considering tensile fractures (see Mode I in Figure 2.19) as the dominant failure

mechanism, a volumetric strain-dependent permeability evolution can be considered.

Therefore the following relationship, based on a cubic law is considered:

kw,ij = kw,ij,0 (1 + βper ε
p
v
3) (2.51)
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where εpv is the plastic volumetric strain and βper controls the permeability increase, similar

to Equation 2.52.

Considering the fact that the EDZ is modeled using shear strain localization, and that

one of two dominating failure mechanisms in the EDZ is shearing (see Section 2.4), a

shear strain depended permeability evolution can be taken into account. According to

Pardoen, Seyedi and Collin (2015), this can be formulated as:

kw,ij = kw,ij,0 (1 + βper⟨Y I − Y I thr⟩ε̂3eq) (2.52)

In the above equation, ε̂eq represents the Von Mises’ equivalent deviatoric total strain, βper

is a model parameter which controls the amount of permeability increase, Y I is the yield

index, Y I thr is the threshold yield index, and ⟨·⟩ denotes the Macaulay brackets. The Yield

Index indicates whether the material is in an elastic state (Y I < 1) or has entered a plastic

state (Y I = 1). It should be noted that the formulation of the Yield Index depends on

the corresponding yield surface of the employed material model. According to Pardoen,

Seyedi and Collin (2015) the consideration of only the plastic zone will underestimate

the permeability whereas considering both elastic and plastic zone will overestimate the

permeability evolution. Therefore, Pardoen, Seyedi and Collin (2015) included the yield

index Y I, as well as a threshold value Y I thr below which changes in intrinsic permeability

are not taken into account.

In the end, the choice of the permeability evolution strongly depends not only on the

material behavior but also on the mechanism of shear band formation and the geometrical

extension of the shear band within the domain. It must be selected in accordance with

in situ observations and validated by comparing to numerical results. Therefore, it is

strongly recommended to investigate the different permeability evolution approaches in a

numerical model with clear boundary conditions (e.g. a biaxial compression test), which

is further elaborated in Section 4.2.



3. Determination of material

parameters

3.1. Introduction

After discussing the fundamentals of this research in the previous section, the focus now

shifts to the actual material under investigation: Opalinus clay. Opalinus clay is con-

sidered a candidate for nuclear waste disposal host rock in Switzerland, consequently

extensive research to characterize its mechanical and hydraulic properties has been done,

allowing the direct derivation of constitutive model parameters from the existing litera-

ture.

However, due to the presence of inhomogeneities such as microfossils and pyrite, which

significantly influence the reproduction of swelling tests, the limited sample size of intact

Opalinus clay compared to the size of these inhomogeneities poses significant challenges.

To mitigate this issue, reconstituted Opalinus powder is investigated by Christ et al.

(2025), eliminating the influence of anisotropy, structure, and inhomogeneities, allowing

for a more in-depth analysis of resulting swelling compared to intact material.

This chapter is structured as follows. Section 3.2 begins with a literature review to derive

both mechanical and hydraulic constitutive parameters for intact Opalinus clay. Follow-

ing this, Section 3.3.1 details the derivation and calibration of mechanical constitutive

parameters for remolded Opalinus clay, based on an analysis of various oedometer tests

and a series of triaxial tests. Section 3.3.2 then focuses on the determination of hydraulic

parameters, utilizing soil water characteristic curves and permeability tests.

With these parameters established, Section 3.4 presents the numerical modeling of swelling

tests for both intact and remolded Opalinus clay under various boundary conditions. This

modeling facilitates the determination of suction-dependent model parameters and by

comparing with laboratory results enables the validation of the model.

59
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Finally, Section 3.5 introduces a biaxial test on remolded Opalinus clay, which is sub-

sequently modeled to illustrate the impact and importance of shear strain localization.

This section also demonstrates that the chosen constitutive model effectively captures this

critical behavior.

3.2. Hydro-mechanical properties of intact Opalinus clay

As previously mentioned, Opalinus clay serves as a potential host rock for nuclear waste

disposal in Switzerland. To ensure safe disposal over thousands of years, extensive testing

and research have been conducted at the Mont Terri underground rock laboratory (URL),

depicted in Figure 3.1.

Opalinus clay shale, a fine-grained sedimentary rock, was deposited around 180 million

years ago. The overburden at the Mont Terri URL varies from 230 to 330 meters, but dur-

ing the late Tertiary period, it is believed to have reached up to 1350 meters. These depth

variations suggest that Opalinus clay may have experienced diverse stress conditions and

diagenetic processes over its burial period. Consequently, its mechanical characteristics

may differ between shallower and deeper depths (Giger et al., 2015; Favero et al., 2016).

This research focuses primarily on shallow Opalinus clay, specifically the shaly facies from

the Mont Terri URL at a depth of approximately 300 meters, which aligns with conditions

in the New Belchen tunnel project used as the basis for the tunnel simulations described

later (Bossart and Thury, 2008; Ziegler et al., 2022).

The determination of constitutive parameters for Opalinus clay has relied on a compre-

hensive review of existing literature. This review included Mont Terri Technical Reports,

Figure 3.1.: Location and design of the URL at Mont Terri (Giger et al., 2015)
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the GRS report by the Society for Plant and Reactor Safety (Gesellschaft für Anlagen-

und Reaktorsicherheit) (Zhang et al., 2004), and various research articles.

The range of constitutive parameters for Opalinus clay has been established through

various methods, including laboratory tests and field tests. Table 3.1 summarizes the

range for these parameters. Due to the complexity of the experimental methodologies

involved, a detailed discussion is outside the scope of this research. Interested readers

are encouraged to explore the references listed in Table 3.1 for further insights into these

methodologies.

Given the limited availability of suction-dependent laboratory tests, the calibration of the

suction-dependent parameters of the Barcelona Basic Model relies on data from laboratory

tests conducted at Ruhr University Bochum (RUB), which will be presented in Section 3.4.
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Table 3.1.: Overview of constitutive parameter ranges for Opalinus clay from literature

review
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3.3. Parameter calibration of remolded Opalinus clay

In contrast to intact Opalinus clay shale, which has been extensively studied in the lit-

erature, laboratory testing on remolded Opalinus clay powder is very limited. Therefore,

several laboratory tests (e.g., oedometer and triaxial tests) were conducted on remolded

Opalinus powder at RUB to determine its hydro-mechanical properties.

In the following section, the mechanical and hydraulic constitutive parameters for re-

molded Opalinus clay are calibrated using these laboratory tests.

3.3.1. Mechanical parameters of remolded Opalinus clay

For the calibration of mechanical parameters for remolded Opalinus clay, oedometer and

triaxial tests are performed. The oedometer tests provide insights into soil compressibility,

while the triaxial tests determine the soil shear strength, both of which are crucial for

accurately characterizing the soil and for calibrating the Barcelona Basic Model (BBM),

already introduced in Section 2.2.3.2.

Oedometer tests

Oedometer tests are essential for determining the compressibility of remolded Opalinus

clay, providing insights into its elastic and plastic behavior and enabling the calibration

of the swell index κ, the compression index λ, and the preconsolidation pressure p0. The

parameters are calibrated using oedometer tests on remolded Opalinus powder conducted

by Christ et al. (2025).

A high-pressure oedometer was utilized for these tests, as described in detail in Baille et al.

(2010). Prior to commencing a test, the initially dry compacted sample (ρd = 2.0 g/cm3,

w = 3.17%, h = 2 cm, d = 5 cm, compaction pressure Pcomp = 20MPa) was installed in

the oedometer device. The dry density ρd = 2.0 g/cm3 was chosen to match the inital

dry density of the intact samples. It should be noted that preparing samples with higher

densities was not feasible with the available equipment. A total of three oedometer tests

were carried out: one in the unsaturated state with an initial suction sinit = 68MPa,

which corresponds to the initial water content of the remolded material according to the

soil water characteristic curve (SWCC) and another where the sample was saturated with

deionized (DI) water under constant volume conditions until the swelling process was

complete. And lastly, one oedometer test where the sample was allowed to swell under a

small load of around 10 kPa until the swelling process was complete, subsequently denoted
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as free swollen sample. All three samples were loaded stepwise up to 24.95MPa, followed

by stepwise unloading and reloading.

For all three oedometer tests, the results are presented as void ratio e versus vertical stress

σv, as shown in Figures 3.2 to 3.4.

Beginning with the oedometer test on the constant volume swollen sample, the initial

void ratio e upon installation is 0.338, according to Christ et al. (2025). The first pressure

increase up to around 1.17MPa without a change in void ratio e is due to the saturation

of the sample, thus hydro-mechanical swelling under constant volume conditions.

Before conducting a finite element test, the initial values of the compression index λ and

swell index κ are estimated based on the slope of the corresponding path on the σv − e

diagram. For the initial value of the preconsolidation pressure p0, the Casagrande method

(Casagrande, 1936) is used. Assuming a true constant volume condition ∆εv = 0 and

solely elastic swelling pressure buildup, the slope of the reversible wetting-drying line κs

can be analytically calculated as:

κs = κ · ln(pB)− ln(pA)

ln (sA + pa)− ln (sB + pa)
(3.1)

where index A represents the initial time and B the final time, respectively. Here, p denotes

the net mean stress and s denotes the suction. For further details and the derivation,

please refer to Appendix A.
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Figure 3.2.: Void ratio as a function of vertical stress of constant volume swollen oedometer

test
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In the BBM, the swell index κ, the compression index λ, and the preconsolidation pres-

sure p0 are defined in terms of the net mean stress p (see Section 2.2.3.2), rather than

of the vertical stress σv measured during laboratory testing. As the horizontal stress

during the test was not measured, and therefore p is not known from the laboratory, a pa-

rameter calibration is mandatory. Therefore, the initial estimated parameter values were

manually varied until the best possible agreement between simulation and experiment

was achieved. It should be noted that the initial parameter estimation and subsequent

parameter calibration were performed separately for each oedometer test considered here.

The parameter calibration is conducted using a numerical element test, starting with

the previously determined values for the swell index κ, the compression index λ, the

preconsolidation pressure p0 and the slope of the reversible wetting-drying line κs as the

initial values. In the finite element model, only a single element was modeled, with

the top nodes of the element fixed in vertical direction uy = 0. For the modeling of

the laboratory tests, the coupled finite element MWAT 2D (Collin, 2003) ia used. This

element is an isoparametric element with eight nodes and four integration points. Each

node possesses five degrees of freedom namely spatial coordinates, water pressure, gas

pressure and temperature. As the temporal evolution of the void ratio e during swelling

was not recorded, the initial suction of 68MPa is linearly reduced until zero by controlling

the pore water pressure pw in all nodes in order to simulate the constant volume swelling

process. Once the sample reached full saturation s = 0, the fixity on top of the element

is released and replaced with a load condition, with an initial value equal to the swelling

pressure. Throughout loading, the pore water pressure buildup is constrained to ∆pw = 0

to enforce drained behavior of the sample.

As previously stated, the horizontal stress σh during the test is unknown. Therefore, an

assumption of the ratio of the horizontal and vertical stress, K0, and an assumption of

the Poisson’s ratio ν are required. To align with the subsequent triaxial and the later

described biaxial tests (see Section 3.5), the same Poisson’s ratio ν = 0.17, which could be

derived directly from the triaxial and biaxial test data, is used here. The determination

of the Poisson’s ratio from the laboratory test data is elaborated in the corresponding

section.

Looking at the resulting evolution of void ratio e with vertical stress σv, it becomes

evident that the first two load steps after the sample is fully saturated result in only a

small change in the void ratio. This suggests that the initial preconsolidation pressure

p0, arising from the compaction of the sample, is largely dissipated during the swelling
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process. Consequently, the actual preconsolidation pressure p0 should correspond to the

resulting swelling pressure.

The comparison between laboratory results and the finite element simulation, shown in

Figure 3.2, demonstrates a good agreement between the simulated and experimental out-

comes. The normal consolidation line (NCL) was well represented using the Barcelona

Basic Model (BBM). The unloading-reloading path from 24.95MPa to 1.2MPa in the

experiments exhibits a steeper inclination in the σv − e diagram compared to the incli-

nation observed during the initial elastic loading from 1.2MPa to 1.4MPa, as illustrated

in Figure 3.2. This stress-dependent variation in elastic stiffness cannot be accurately

simulated using the BBM, which employs a constant swell index κ. Consequently, the

hysteresis observed during unloading and reloading cannot be captured by this model.

To study the effect of the boundary conditions during swelling (e.g., free or constant

volume) on the mechanical behavior of Opalinus clay, a second oedometer test was per-

formed, where the sample was allowed to deform during the swelling. The outcome of

this test also shows how much of the initial preconsolidation pressure p0 due to sample

compaction is degraded during swelling.

A sample with identical initial conditions was prepared for the test and installed in the

oedometer. Unlike the previous test, the loading piston remained unfixed on the sample

during hydration, resulting in a small constant vertical load of around 10 kPa, to allow

the measurement of the vertical deformation after full saturation. After the sample was

fully saturated s = 0, the load piston was attached to the load frame and the sample

was gradually loaded up to the same maximum load of 24.95MPa, as in the constant

volume swollen oedometer test. In addition to the unloading and reloading at 24.95MPa,

a short unloading and reloading was applied at a load of 1.12MPa. This has been done to

estimate the swell index κ for smaller vertical loads, e.g., in the range of the equilibrium

swelling pressure for constant volume conditions.

During the hydration process, the void ratio e of the sample increased from an initial value

of 0.348 to 0.583 after swelling, as illustrated in Figure 3.3. In the first loading step, from a

dead load of 10 kPa to 100 kPa, the void ratio e shows minimal change, suggesting that the

sample remains within the elastic region. As the load increases to approximately 300 kPa,

the sample transitions from the elastic to the plastic region, indicated by a straight line on

the semi-logarithmic scale of the σv−e diagram in the range from 300 kPa to about 5MPa

vertical load. This suggests that the preconsolidation pressure p0 lies within this range.

From 5MPa to 11MPa, a kink is observed in the σv − e diagram, labeled as ’1. kink’

in Figure 3.3. A second kink, marked as ’2. kink’ in the same figure, appears between



3.3. Parameter calibration of remolded Opalinus clay 67

0.0 0.1 1.0 10.0
Vertical stress σv [MPa]

0.2

0.3

0.4

0.5

0.6

V
oi
d
ra
ti
o
e
[-
]

Simulation

Laboratory

1. kink
��	

2. kink
��	

Figure 3.3.: Void ratio as a function of vertical stress of free swollen oedometer test

11MPa and 24.95MPa. Notably, after the second kink, the final load increment exhibits

the same slope as observed in the range from 300 kPa to approximately 5MPa, suggesting

that both kinks together might represent a parallel shift in the stress-strain relationship.

This kink or parallel shift can be explained by two conclusive theories. The first the-

ory suggests that a slight misalignment of the loading piston may have caused friction

between the load piston and the oedometer ring, which was overcome in this specific

stress region. However, no direct observations were made during the test to support this

theory. The second theory posits that the particles within the sample’s microstructure

experienced reorientation, leading to the observed kink. This theory is supported by SEM

investigations on free swollen and constant volume swollen Opalinus samples conducted

by Christ (2025), which indicated different particle orientations after swelling. Assum-

ing that, with increasing pressure, the particles will reorient similarly, this might explain

the parallel shift. However, no SEM investigations were conducted after both tests to

confirm this. Consequently, the extent to which this behavior is due to metrological or

material factors cannot be conclusively determined. Regardless, the material model used,

the Barcelona Basic Model (BBM), cannot replicate this kink, so the origin of the kink

can be disregarded in the context of this thesis.

In contrast to constant volume swelling, the derivation of κs for free swelling under oe-

dometric boundary conditions is not analytically feasible. This is because, although the

vertical load σv is constant during the hydration, the net mean stress p is not constant

due to the oedometric boundary conditions.
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Therefore, the resulting swelling strain is affected not only by the slope of the reversible

wetting-drying line κs, but also by the swell index κ. As already mentioned, the parallel

shift as a consequence of either microstructure evolution or technical reasons can not

be modeled using BBM, therefore a straight line in semi-logarithmic σv − e diagram is

assumed. The swell index κ and the slope of the reversible wetting-drying line κs are

calibrated using a numerical element test. As in the previous calibration, initial values

for the swell index κ, the compression index λ, the preconsolidation pressure p0 and the

slope of reversible wetting-drying line κs are determined using the σv − e diagram.

By comparing the laboratory results and finite element simulations, illustrated in Fig-

ure 3.3, an almost perfect fit until a vertical load σv = 5MPa could be achieved. The

parallel shift although could not be simulated, as previously explained. All in all a satis-

factory fit is achieved.

When comparing the two oedometer tests on the swollen Opalinus powder, several con-

clusions can be drawn. The swell index κ, for both the low-stress region (1MPa) and the

high-stress region (24MPa), as well as the compression index λ, exhibit similar magni-

tudes in both tests, see Table 3.2. The observed difference in preconsolidation pressure p0

can be attributed to the fact that, during constant volume swelling, the preconsolidation

pressure is influenced by the resulting swelling pressure. Due to the kink or parallel shift

in the oedometer test on the free-swollen material, the same final void ratio of e = 0.13

was reached in both tests. The difference in the slope of the reversible wetting-drying

line κs can be explained by the modeling of truly constant volume boundary conditions,

which are difficult to achieve in laboratory settings due to the necessity for the load cell

to deform slightly in order to measure force. The significance of small deformations and

their impact on the resulting swelling stress will be further explored in the modeling of

the swelling tests in Section 3.4.

In addition to the two saturated oedometer tests, an oedometer test was conducted on dry

compacted powder. The test procedure was identical to the previous tests, but without an

initial swelling phase. Figure 3.4 presents the σv−e diagram, indicating stiffer mechanical

behavior compared to the saturated tests. Determining the preconsolidation pressure p0,

swell index κ, and compression index λ is challenging due to the difficulty in distinguishing

the virgin loading and reloading paths clearly. Considering that the vertical compaction

pressure during sample preparation was already Pcomp = 20MPa, it can be assumed that

only the final loading steps represent virgin loading. Additionally, the σv − e relationship

appears nearly linear in a non-logarithmic diagram, suggesting linear elasticity, whereas
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Figure 3.4.: Unsaturated oedometer test results in terms of void ratio as a function of

vertical stress

the saturated tests exhibited linear behavior in semi-logarithmic diagram, indicating a

non-linear elasticity.

To accommodate linear elasticity in the BBM, a minimum stress pmin can be defined

beyond which the soil exhibits stress-independent stiffness.

The bulk modulus can then be expressed as:

K =
1 + e

κ
· p with p ≥ pmin (3.2)

where p ≥ pmin ensures linear elastic behavior until the stress exceeds pmin.

For the finite element simulation, the same element test setup is employed as for the

saturated oedometer tests. Despite the sample being unsaturated during the test, it

is modeled as fully saturated. This simplification is adopted because the parameters

dependent on suction are currently unknown, and furthermore, changes in suction are not

expected during the test.

With this simplification and the assumption of a linear elastic zone (pmin = 7MPa), the

constitutive parameters for the dry Opalinus powder are calibrated. The results of the

numerical simulation are compared with the laboratory results in Figure 3.4. Especially

in the transition between the linear elastic zone and the plastic zone, fitting simulation

and laboratory results is challenging. However, the overall agreement with the laboratory

results is satisfactory.

The results of the parameter calibration for all three oedometer tests are summarized

in Table 3.2. While the compression index λ and the swell index κ for constant volume
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Table 3.2.: Summary of parameter calibration results for oedometer tests on remolded

Opalinus clay powder

Parameter Unit Constant volume Free swelling Unsaturated

Compression index (λ) - 0.079 0.079 0.080

Swell index (κ) - 0.068 0.068 0.040

Preconsolidation Pressure (p0) MPa 1.2 0.1 5

Reversible wetting-drying (κs) - 0.020 0.055 -

and free swelling conditions are the same, different preconsolidation pressures p0 and κs

values were found. These differences are caused by the variation in boundary conditions

during saturation, as already explained. The unsaturated case, on the other hand, results

in completely different values due to the increased mechanical stiffness caused by the

suction.

Triaxial tests

The next section focuses on the calibration of shear strength parameters, specifically the

friction angle φ and cohesion c, using triaxial tests. These tests are crucial for accurately

characterizing the mechanical behavior of remolded Opalinus clay under various stress

conditions.

A series of three drained triaxial tests was performed on compacted and saturated Opal-

inus clay powder to determine the friction angle φ and the cohesion c for the numerical

model. Initially, the samples were compacted from both sides. The target dry density

was set at 2.0 g/cm3, with sample dimensions of d = 3.5 cm and h = 7 cm. The samples

were then placed in the triaxial testing apparatus, where a support pressure of 0.3 bar

and a backpressure of 0.2 bar was applied for the saturation process. After saturation, the

support pressure was increased from 0.3 bar to 3 bar and the back pressure from 0.2 bar to

3 bar. After a successful B-test, which verifies the saturation of the sample, the samples

were consolidated under the final effective confinement pressure σ′
3. For the test series,

σ′
3 values of 100, 300, and 500 kPa were selected. The axial deformations were recorded

throughout the whole test whereas the volumetric deformations were recorded only during

consolidation and shearing phases. The shear rate of 0.003mm/min was used in the tests

to prevent pore water pressure pw buildup.

As there was neither a measurement of the radial deformations nor of the change in volume

during saturation, isotropic volume increase during saturation was assumed to calculate
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the volume after swelling. The values of the volume V0 and porosity ϕ0 after saturation

for each test derived in this manner are presented in Table 3.3.

The resulting deviatoric stress q over axial strain ε1 and the volumetric strain εv over

axial strain ε1 are illustrated in Figures 3.5 and 3.6, respectively. Figure 3.5 demonstrates

continuous hardening across all three tests, and Figure 3.6 illustrates compaction during

shearing.

The Poisson’s ratio ν can be determined from the relationship between volumetric strain

εv and axial strain ε1 in the elastic region. Assuming triaxial test conditions and linear

elasticity, the Poisson’s ratio can be calculated using the following formula:

νtri =
∆εv −∆ε1

2∆ε1
(3.3)

where ∆εv and ∆ε1 are the volumetric and axial strain increments, respectively. Using

Equation 3.3, a Poisson’s ratio ν = 0.17 was calculated for a strain increment ∆ε1 = 0.014,

where all three tests exhibit a similar volumetric strain increment ∆εv.

Table 3.3.: Initial porosity and volume values for triaxial test series on Opalinus powder

Parameter Unit σ′
3 = 100 kPa σ′

3 = 300 kPa σ′
3 = 500 kPa

Porosity (ϕ0) - 0.3061 0.2765 0.2608

Volume (V0) cm3 82.020 80.154 78.474
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Figure 3.5.: Drained triaxial test results in terms of deviatoric stress over axial strain
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Figure 3.6.: Drained triaxial test results in terms of volumetric strain over axial strain

Figure 3.7 depicts the relationship between the deviatoric stress q and the net stress p.

The residual values are connected by a line, the critical state line (CSL), which allows for

the determination of the friction angle φ = 25.2◦ and the cohesion c = 25.7 kPa.

In order to validate the determined values of friction angle φ and cohesion c, numerical

element tests are performed for final parameter calibration. The swelling and consoli-

dation processes are not modeled, as the focus of this test is the determination of the

shear strength parameters. Instead, the sample volume and void ratio after consolidation

are considered for each test individually, see Table 3.3. Pore water pressure buildup is

prevented by fixing pore water pressure evolution at ∆pw = 0.

One assumption made is that the swell index κ is considered constant and identical for all

three tests. However, as observed in the previously discussed oedometer tests, the swell

index κ decreases with decreasing stress (unloading-reloading path).

Due to the limited unloading in the small stress regime during oedometer testing, the

swell index κ for low stresses remains unknown and needs to be calibrated as well. The

preconsolidation pressure p0 is assumed to differ for each test. Based on the free swelling

oedometer tests, it is assumed that some part of the preloading resulting from the com-

paction pressure is preserved during saturation. A minimum preconsolidation pressure

p0 of either 300 kPa (support pressure) or effective confining pressure σ′
3 can be assumed.

This is further supported by the linear portion of the volumetric versus axial strain curve

shown in Figure 3.6, indicating even higher preconsolidation pressure p0 values.

As shown in Figure 3.5, the laboratory and simulation results for deviatoric stress q versus

axial strain ε1 are in good agreement.
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Figure 3.7.: Drained triaxial test results in terms of deviatoric over net stress

Considering that the amount of volumetric plastic strain, which contributes to hardening

in this case, is controlled by the compression index λ and the swell index κ, accurately

estimating these values is crucial for achieving a good match between laboratory and

simulation results in terms of volumetric strain εv versus axial strain ε1. As the oedometer

tests indicate a consistent compression index λ = 0.08, calibration focuses purely on the

swell index κ, which is not well-known for small stresses below 1MPa.

The uncertainty in initial volume during laboratory testing, where only vertical displace-

ments are measured during hydration and uniform swelling is assumed, an assumption

that may not fully account for initial anisotropy during sample preparation, complicates

parameter calibration. Consequently, the laboratory and simulation results in terms of

volumetric strain εv versus axial strain ε1, as shown in Figure 3.6, exhibit discrepancies.

Overall, the primary goal of determining the friction angle φ and cohesion c has been

achieved, with the modeling demonstrating a good agreement with the experimental data.

The parameters determined during the calibration process are summarized in Table 3.4.

Table 3.4.: Summary of parameter calibration for triaxial test series on Opalinus powder

Parameter Unit σ′
3 = 100 kPa σ′

3 = 300 kPa σ′
3 = 500 kPa

Friction angle (φ) degree 25 25 25

Cohesion (c) MPa 2 2 2

Swell index κ - 0.033 0.033 0.033

Preconsolidation pressure (p0) kPa 400 500 650



74 3. Determination of material parameters

3.3.2. Hydraulic parameters of remolded Opalinus clay

In the previous section, the mechanical parameters of remolded Opalinus clay were cal-

ibrated using oedometer and triaxial tests. Since the focus of this research is on the

coupled hydro-mechanical behavior, it is also necessary to determine the hydraulic con-

stitutive parameters. Therefore, in this section, the constitutive parameters for the soil

water retention curve (SWCC) and hydraulic permeability are derived using laboratory

test data from the literature.

3.3.2.1. Water retention behavior

For full hydro-mechanical coupling the relationship between the degree of saturation Sr

and suction s, known as the soil water characteristic curve (SWCC), is crucial. For this

thesis, tests on remolded Opalinus clay powder performed by Christ et al. (2025) for

constant volume and free swelling boundary conditions are used. The samples with an

initial dry density of 2.0 g/cm3 exhibited an initial degree of saturation Sr = 18% at a

suction s of around 68MPa. The samples were then saturated or desaturated beginning

from the initial state via the vapor phase in desiccators with different supersaturated salt

solutions. In order to model the SWCC the Van Genuchten’s equation (Van Genuchten,

1980) was used:

Sr = (1 + (α · s)n)−m (3.4)

where Sr is the degree of saturation, s is the total suction and α, m and n are fitting

parameters.

In the majority of finite element codes, the fitting parameters n and m are dependent,

with m defined as m = 1 − 1
n
. This dependency results in a closed-form equation for

Equation 3.4, as it eliminates the need for iterative or numerical methods to solve for m,

thereby allowing for direct computation.

With the laboratory test data from Christ et al. (2025) and fitting with Equation 3.4

a relationship between the suction s and the degree of saturation Sr could be derived

as illustrated in Figure 3.8. As shown, a good agreement for both boundary conditions,

free and constant volume, with a single parameter set for the Van Genuchten fitting

parameters (α = 0.220MPa-1, n = 1.556, and m = 0.357), could be found.
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Figure 3.8.: Soil-water characteristic curves for free and constant volume swelling accord-

ing to Christ et al. (2025) with Van Genuchten fitting (α = 0.220MPa-1; n = 1.556)

3.3.2.2. Intrinsic hydraulic permeability

Another critical parameter influencing the coupled hydro-mechanical behavior is the hy-

draulic permeability kf , as it directly impacts the temporal evolution of settlements and

the buildup of pore water pressure. Given that hydraulic permeability is inherently de-

pendent on soil density, it is essential to account for variations in this parameter across

different initial dry densities. To this end, experimental tests were conducted by Christ

et al. (2025) on remolded Opalinus clay powder with varying initial dry densities to sys-

tematically evaluate the impact of density on hydraulic permeability.

The determined values of hydraulic permeability kf are shown as a function of the cor-

responding porosity ϕ in Figure 3.9. The relationship between permeability and porosity

is clearly illustrated, providing insights into how variations in porosity influence the hy-

draulic permeability of the remolded Opalinus clay powder. For the sake of numerical

modeling a modified Kozeny-Carman equation (Collin, 2003) is used:

kf = kf,0
(1− ϕ0)

m

ϕn0

ϕn

(1− ϕ)m
(3.5)

where ϕ0 is the initial porosity corresponding to the initial intrinsic permeability kf,0,

and the exponents n and m are fitting parameters. In this study, the initial porosity

and permeability corresponding to a dry density of 2.0 g/cm3, ϕ = 0.2526 and kf =

6.15 · 10−18m2, are selected. In the original Kozeny-Carman formulation, as shown in

Equation 2.48, the exponents are set to n = 3 and m = 2. However, in this study,
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exponents of n = 5.5 and m = 1 were determined to achieve better alignment with the

laboratory results.

Figure 3.9 illustrates the laboratory results, the original Kozeny-Carman fit, as well as

the modified Kozeny-Carman fit. As shown, the fit of the modified Kozeny-Carman

equation aligns well with the experimental data, indicating that the adjusted parameters

effectively capture the relationship between permeability and porosity for the Opalinus

powder under the tested conditions. In contrast, the original Kozeny-Carman equation

provides a reasonable fit for the two higher porosities but fails to accurately represent the

smaller porosity.
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Figure 3.9.: Permeability over porosity for three different initial dry densities including

Kozeny-Carman fit (Christ et al., 2025)
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3.4. Numerical modeling of swelling tests

In the previous chapter, mechanical as well as hydraulic model parameters were either

obtained by literature study (intact Opalinus) or calibrated using laboratory tests (re-

molded Opalinus). For the calibration of all constitutive parameters, including not yet

determined suction-dependent parameters of the BBM, laboratory tests with controlled

suction would be required. These are non-standard tests, and consequently, equipment

and results are very rare. Nevertheless, to simulate the swelling phenomena, swelling tests

with different boundary conditions were performed at RUB, allowing the calibration of

the relevant constitutive parameters affecting swelling. Therefore, in this section, finite

element models, that are capable of simulating the different swelling tests, and calibrated

constitutive parameters are presented.

3.4.1. Intact Opalinus clay shale

The relationship between swelling pressure and swelling deformation is critical for appli-

cations in tunnel construction. To accurately model the swelling phenomenon, a series of

swelling tests with varying boundary conditions were conducted on intact Opalinus clay

shale samples by Christ (2025). Two types of tests were performed: constant volume

swelling pressure tests, where both horizontal and vertical deformations were constrained,

and free swelling tests, where the sample was confined laterally within an oedometer ring

but allowed to deform vertically. These conditions are referred to as constant volume

and free swelling, respectively. For each type of test, samples were prepared with orien-

tations both perpendicular and parallel to the bedding plane. In the case of the sample

cut perpendicular to the bedding, the bedding planes are oriented horizontally within the

sample. Conversely, in the sample cut parallel to the bedding, the bedding planes are

oriented vertically.

The boundary conditions of the axisymetric finite element models for both test types

are illustrated in Figure 3.10. The finite element framework Lagamine, developed at

the University of Liège (Charlier, 1987; Collin, 2003), was used with elements that allow

coupled analyses. The model dimensions, with a diameter of 5 cm and height of 2 cm, are

selected according to the laboratory swelling tests conducted by Christ (2025). In these

tests, vertical displacements at the bottom of the sample, and horizontal displacements

on the right side and along the symmetry axis of the sample are constrained. An initial

pore water pressure pw of -14.9MPa is applied throughout the sample, based on an initial
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suction s measurement of 15MPa (s = pa−pw), as reported by Christ (2025). To simulate

the hydration process, a pore water pressure pw = 15MPa is applied at the bottom of the

sample. To mitigate oscillations during saturation, a finer mesh is employed in the lower

section of the sample.

In the free swelling tests (Figure 3.10a), vertical movement of the sample is permitted,

though a small load of 10 kPa is applied to the top of the sample as in the laboratory test.

This load is necessary as the swelling strain and swelling pressure are highly sensitive to

variations in pressure or deformation. Consequently, the boundary conditions are designed

to closely replicate real-world conditions.

In the case of the constant volume swelling tests, a zero-thickness contact interface element

(Cerfontaine et al., 2015) is implemented at the top of the model to record the contact

forces, which are then used to calculate the swelling pressure, as illustrated in Figure 3.10b.

The contact interface enforces the constraints using the penalty method. Since the contact

problem only acts normal to the interface and no shear friction is anticipated, the primary

parameter governing the interface behavior is the penalty coefficient KN . This coefficient

is set to KN = 2.4× 1010N/m3, derived from observations of the deformation-controlled

swelling test which will be described in Section 3.4.2.

For the constant volume swelling tests, two tests were conducted in each orientation. The

results of the constant volume swelling tests are illustrated in Figure 3.11. As can be

seen, the material response is both highly inhomogeneous and anisotropic. Perpendic-

ular to the bedding plane, a swelling pressure ranging from 1000 to 2000 kPa develops,

whereas parallel to the bedding plane, only a very low swelling pressure of about 100 kPa

is observed.

(a) Free swelling test (b) Constant volume swelling test

Figure 3.10.: Numerical models and boundary conditions of the two swelling tests
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Figure 3.11.: Constant volume swelling test results in terms of swelling pressure over time

Even within the same direction, the results, particularly perpendicular to the bedding,

vary significantly. Since Opalinus is a sediment rock, it is not homogeneous, meaning mi-

crofossils or pyrite can occur within the rock structure, which can lead to larger differences

between tests on different intact samples (Christ, 2025).

For the modeling, a separate parameter set is calibrated for each orientation relative to the

bedding plane (parallel and perpendicular). In the laboratory, two tests were conducted

for each orientation, and the model calibration aimed to reproduce the mean swelling

pressure observed for each orientation.

All suction-independent parameters are estimated using Table 3.1. The suction-dependent

parameters, particularly the slope of the reversible wetting-drying line κs, which controls

swelling magnitude, are calibrated using the results from the swelling tests. Since the

objective of this calibration is to apply these parameters to a tunnel construction scenario,

where only a single set of parameters can be utilized due to the lack of anisotropy in the

BBM, parameters other than κs were kept consistent across both orientations.

When comparing simulated to measured swelling pressures, the target mean values of

swelling pressure are achieved with good agreement (see Figure 3.11). The plateau of

the swelling pressure in the perpendicular-to-bedding direction is reached more quickly

than in the laboratory tests. This discrepancy may be attributed to the use of identical

permeability for both orientations of the sample, whereas in reality, the permeability is
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lower in the perpendicular-to-bedding direction, resulting in slower saturation and a more

gradual increase in swelling pressure.

Moving towards the free swelling tests, the differences between the two orientations are

not as pronounced. Figure 3.12 illustrates the temporal evolution of swelling strain. It is

evident that both samples oriented either perpendicular or parallel to the bedding plane

reach similar maximum strains, in the range of 12%. Consequently, only one parameter

set is calibrated to accommodate both orientations.

As shown in Figure 3.12, the equilibrium swelling strains are modeled with good agree-

ment. The reason for the quicker attainment of the plateau is, as before, the use of a

single parameter set, resulting in the same permeability for both orientations.

The parameter values selected from the literature, along with the calibrated parameters

derived from the previously discussed swelling tests, are compiled in Table 3.5. These

parameters serve as the basis for the tunnel simulations presented in the subsequent

chapters.

In summary, intact Opalinus clay shale exhibits inhomogeneous and anisotropic mate-

rial behavior, although this anisotropy is observed less pronounced in free swelling tests.

Additionally, the κs values determined showed significant discrepancies between different

boundary conditions. To better understand these discrepancies, swelling tests with con-

trolled deformation are necessary. However, given that such tests on intact Opalinus clay

shale are time-consuming and subject to considerable uncertainty due to the material’s

inhomogeneities, it was decided to conduct these tests on remolded Opalinus clay. The

results of these tests will be presented in the subsequent section.
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Figure 3.12.: Free swelling test results in terms of axial swelling strains over time
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Table 3.5.: Summary of constitutive parameters of intact Opalinus clay

Parameter Unit Value

Initial porosity (ϕ0) - 0.14

Grain density (ρs) kg/m3 2675

Swelling index (κ) - 0.004

Poisson’s ratio (ν) - 0.33

Cohesion (saturated state) (c(0)) MPa 2

Evolution of cohesion with suction (k) - -

Friction angle (φ) degree 25

Compression index (λ) - 0.021

Preconsolidation pressure (p0) MPa 20

Reference pressure (pc) MPa 0.1

Maximum stiffness constant at infinite suction (r) - 0.6

Rate of change of λ(s) with suction (β) MPa−1 0.015

Plastic suction coefficient (λs) - 0.008

Yield limit in terms of suction (SI curve) (s0) MPa 30

Slope of reversible drying-wetting line (κs)

-

κs,⊥,CV = 0.00290

κs,//,CV = 0.00002

κs,Free = 0.0380

Initial intrinsic permeability (k0) m2 2 · 10−18

Van Genuchten parameter (α) MPa-1 0.019

Van Genuchten parameter (n) - 2.132

// Parallel to bedding direction, ⊥ Perpendicular to bedding direction

3.4.2. Remolded Opalinus clay

As already discussed in the previous section, the applied boundary conditions within

swelling tests are key to analyze the swelling and to model these tests, as small deforma-

tions have a major impact on the measured swelling pressures.

Beside the differences arising from varying bedding directions in intact Opalinus clay

shale, it was not possible to calibrate a single parameter set that accurately models both

boundary conditions, i.e. constant volume and free swelling tests. Specifically, when

simulated swelling strains align well with observed values, the swelling pressure tends to

be overestimated, and conversely, when swelling pressure is accurately represented, the

swelling strains are underestimated. To better understand the phenomenological behav-
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iors and fundamental coupled mechanisms, tests were conducted on remolded Opalinus

powder by Christ et al. (2025). The homogeneity of the remolded sample reduces one

potential source of uncertainty and facilitates faster laboratory testing.

In addition to the free swelling test, a constant volume swelling test with stepwise un-

loading, referred to as the deformation-controlled swelling test, was performed by Christ

et al. (2025). This test was conducted to gain a clearer understanding of the relationship

between swelling pressure and swelling strains.

For the free swelling test, the same finite element model as for the intact Opalinus clay

shale is used, as described in the previous Section. For the deformation-controlled swelling

test, the existing model for the constant volume test is extended. In this case, the de-

formations u applied in the laboratory to achieve the unloading of the sample are also

incorporated into the finite element model at the interface. The boundary conditions of

the deformation-controlled swelling test are illustrated in Figure 3.13.

As demonstrated during the modeling of the swelling test on intact Opalinus clay shale

samples, the assumption of a constant κs is insufficient to represent the various boundary

conditions (constant volume and free) with a single κs. During the modeling and analysis

of the swelling tests performed on remolded Opalinus clay, it is observed that the primary

differences between the two swelling tests, apart from variations in boundary conditions,

are associated with the pressure regime. In the deformation-controlled swelling test,

pressure is allowed to accumulate, whereas the free swelling test maintains relatively

low pressure levels. Due to the swelling of the sample and the oedometeric boundary

conditions, the net mean stress p is not constant but varies throughout the free swelling

test.

Figure 3.13.: Numerical model and boundary conditions of the deformation-controlled

swelling tests
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To account for the differences associated with the pressure regime, the Barcelona Ba-

sic Model for Expansive Soils (see Section 2.2.3.2) is employed, introducing a pressure-

dependent κs. This model includes two new parameters, αp and κs0, which govern the

pressure dependency of κs. It should be noted that the calibration of a pressure-dependent

κs(p) was not feasible for the intact samples due to the lack of deformation-controlled

swelling tests and the high variability in the laboratory data caused by the inhomo-

geneities of the intact Opalinus clay shale samples.

Notably, the suction dependency of κs is omitted to limit the number of unknown pa-

rameters requiring calibration. This decision is based on the lack of suction-controlled

oedometer tests. The swelling tests were commenced from unsaturated conditions and

transitioned to a saturated state during the testing process. The calibration of the oe-

dometer tests revealed different values for κ in the unsaturated and saturated states,

indicating a suction dependency of κ. However, a constant value for κ is used during the

calibration process as a simplification, necessitated by the absence of suction-controlled

oedometer tests for calibration. Additionally, it is noted that the penalty coefficient

KN influences the unloading behavior of the sample, making its calibration critical for

the deformation-controlled swelling test. Consequently, KN is included in the parameter

calibration process. All other parameters were previously calibrated based on laboratory

tests, as detailed in the preceding sections, and are utilized for the modeling of the swelling

tests. Therefore, the parameter calibration is limited to κ, κs,0, αp, and KN .

Although the available laboratory tests do not permit the individual determination of all

unknown parameters due to their interdependencies, a comprehensive calibration process

is undertaken to establish reasonable parameter values. This calibration begins with

several parameter studies to assess the isolated influence of each unknown parameter

on the model’s response, including swelling pressure, swelling strains, and the unloading

process. After gaining insights into these effects, the unknown parameters are manually

calibrated to reproduce the observed swelling behavior. This iterative process results in

a single parameter set that reasonably predicts the behavior of both test conditions with

a high degree of agreement.

The resulting temporal evolution of the free swelling strains as well as the temporal evo-

lution of the swelling pressure during deformation controlled swelling test, are presented

in Figures 3.14 and 3.15, respectively.

When comparing the swelling strain evolution during the free swelling test illustrated in

Figure 3.14, it can be seen that both the laboratory and the simulated temporal evolution

are almost coinciding until approximately 1100 s, indicating an almost perfect fit.
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Figure 3.14.: Free swelling test results in terms of axial swelling strains over time
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Figure 3.15.: Temporal evolution of the swelling pressure in deformation-controlled

swelling test

Afterwards, the simulated swelling strain slightly overestimates the measured swelling

strain. Given that the deviation is within the per mille range, it can be considered a

negligible quantity.

In the deformation-controlled swelling test, the highest swelling pressure of approximately

1100 kPa is observed during saturation. With each unloading step, which is displacement-

controlled, the swelling pressure decreases rapidly but then gradually increases again over

time. However, the equilibrium swelling pressure reached after each unloading is lower

than the pressure observed before the unloading step. During the first constant volume

swelling phase, a peak in swelling pressure can be observed in the laboratory results (see
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Figure 3.15). This phenomenon can be attributed to the reorientation of particles within

the sample, which occurs as a result of swelling and the restriction of volumetric strains.

This assumption is underlined by scanning electron microscope (SEM) images taken before

and after swelling by Christ (2025). As this particle reorientation is on the microstructure

level, it cannot be simulated with the used constitutive model. A comparison of the

equilibrium swelling pressure for each unloading step reveals a close agreement between

the simulated and measured results. In the laboratory the swelling pressure slowly evolves

after each unloading step, whereas in the simulation the equilibrium swelling pressure is

reached faster. For clarity, the equilibrium states are presented in a swelling pressure

versus swelling strains diagram in Figure 3.16. As shown, the equilibrium states are

simulated with good agreement.

In addition to the equilibrium states, the unloading process is also a relevant aspect. As

illustrated in Figure 3.15, the first four unloading steps show good agreement between

the laboratory tests and simulations in terms of the swelling pressure reached directly

after unloading. However, the unloading for the subsequent three steps is overestimated.

Christ et al. (2025) calculated an unloading stiffness using the same approach employed

to estimate the swell index κ in oedometer tests. However, in this case, instead of the

difference between two equilibrium states, the difference between the equilibrium state

and the minimum swelling pressure during unloading was utilized for the calculation.
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Figure 3.16.: Equilibrium swelling pressure as a function of swelling strains in deformation-

controlled swelling test
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In this study, the unloading stiffness is also determined from the simulation results and

used to quantify the discrepancies between the laboratory and simulation outcomes. Given

that the unloading process lasts only a few seconds in both the laboratory and simulations,

and considering the very low permeability of remolded Opalinus clay, the conditions can

be assumed to be approximately undrained. Therefore, the unloading stiffness is referred

to as κundrained. It must be clarified at this point that κundrained does not correspond to

the swelling index κ or the slope of the reversible drying-wetting line κs.

The calculated κundrained values from both the laboratory tests and simulations are plot-

ted in Figure 3.17 as a function of swelling pressure. A pressure dependency of κundrained

is evident for both the laboratory experiment and the simulation, i.e., as the pressure

decreases, the undrained unloading stiffness also decreases. However, certain discrepan-

cies between the simulated and experimental undrained unloading stiffness values can be

observed.

To explain the reason for these discrepancies, it is essential to understand how swelling is

modeled in the Barcelona Basic Model (BBM) and which parameters of the model affect

the unloading in the deformation-controlled swelling test. All processes that contribute

to swelling at the microstructural level, as discussed in Section 2.2.1, are simplified in the

Barcelona Basic Model (BBM), where the swelling process is solely triggered by a reduc-

tion in suction. Looking just on the mechanical aspects, the unloading of the sample leads

to a volume increase and consequently to a pressure reduction in the sample, analogous

to the unloading in an oedometer test that has previously been loaded.
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Figure 3.17.: Undrained unloading stiffness κundrained as a function of swelling pressure in

deformation-controlled swelling test
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From a purely mechanical perspective, where generation of pore water pressure is not

considered, the unloading is modeled exclusively with the swelling index κ in the BBM.

When dealing with a low-permeability material, such as the Opalinus clay studied here,

and aiming to model not only equilibrium states (where a saturation degree of Sr = 1 or

suction s = 0 is commonly assumed), but also the time-dependent behavior, the simulation

must consider changes in pore water pressure and consequently should be performed

hydro-mechanically coupled.

During unloading, the pore space expands, and due to the low permeability, water cannot

flow into the material quickly enough to maintain fully saturated conditions. Analogous

to consolidation theory, this results in the formation of negative pore water pressure or

suction within the sample. The buildup of suction leads to a volume decrease, as described

by Equation 2.9, which reduces the total volume increase induced by the unloading,

leading to lower pressure. Over time, however, water gradually infiltrates the sample,

which leads to a reduction in suction and causes the sample to swell. The constant

volume boundary conditions prevent volumetric strains generated by the reduction of

suction, which are instead transformed into swelling pressure, as previously explained

during the modeling of constant volume swelling tests in the previous section.

In the BBM, the increase or decrease in suction results in volumetric strains, the magni-

tude of which is controlled by κs according to Equation 2.9. A change in the net mean

stress p, in turn, also leads to volumetric strains, and the magnitude is controlled by κ

according to Equation 2.8. When considering constant values for κ and κs and neglecting

the relatively small changes in void ratio e during unloading compared to the subsequent

constant volume swelling, the effect of κs on the equilibrium states is limited, as this

process is essentially reversible. However, since a pressure-dependent κs is used in this

simulation, κs differs during unloading (suction buildup) and resaturation (suction de-

crease), which consequently influences the equilibrium states. Consequently, both κ and

κs influence the unloading process as well as the equilibrium state. It is worth noting that

in the laboratory experiment, neither water inflow was measured nor pore water pressure

sensors were used. Consequently, the suction and degree of saturation are unknown dur-

ing the unloading phase and their distribution within the sample cannot be determined.

However, at equilibrium states, it can be assumed that the sample is fully saturated.

After explaining how swelling is modeled in the BBM and which model parameters influ-

ence the unloading phase during the deformation-controlled swelling test, the discrepancies

between the experimentally measured and simulated swelling pressure curves can now be

addressed.



88 3. Determination of material parameters

One reason for these discrepancies is the assumption of a constant value for κ, despite

back-analysis of oedometer tests in Section 3.3.1 indicating its dependence on both suction

and pressure. Another reason of the observed discrepancies between laboratory results

and BBM simulations can be attributed to microstructural changes caused by constant

volume swelling, which cannot be modeled by the BBM. Christ et al. (2025) demonstrated

this issue by performing complete unloading at different times during constant volume

swelling tests. When unloading was conducted before the swelling pressure peak, swelling

strains of ε1 ≈ 14%, comparable to those observed in the free-swelling test, were recorded.

In contrast, unloading after the peak resulted in significantly reduced swelling strains of

ε1 ≈ 8.5%. According to Christ et al. (2025), these reductions were due to microstruc-

tural changes. To address this, the BBM parameters were calibrated to reproduce the

target free-swelling strains of approximately 14%. Since κs(p) increases at lower net mean

stresses p according to Equation 2.19, this calibration leads to a progressive overestimation

of the unloading process at lower stress levels.

In conclusion, both swelling tests on remolded Opalinus clay could be simulated with a

single parameter set, resulting in a high level of agreement, leading to the conclusion that

the BBMEx is capable of modeling the swell behavior for swellable clay shales.

All previously determined constitutive parameters of remolded Opalinus clay are summa-

rized in Table 3.6.
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Table 3.6.: Summary of calibrated parameters of remolded Opalinus clay

Parameter Unit Value

Initial porosity (ϕ0) - 0.2523

Grain density (ρs) kg/m3 2675

Swelling index (κ) - 0.02

Poisson’s ratio (ν) - 0.18

Cohesion (saturated state) (c(0)) kPa 25.768

Evolution of cohesion with suction (k) - -

Friction angle (φ) degree 25.2

Compression index (λ) - 0.079

Preconsolidation pressure (p0) MPa 12

Reference pressure (pc) MPa 0.1

Maximum stiffness constant at infinite suction (r) - 0.6

Rate of change of λ(s) with suction (β) MPa−1 0.015

Plastic suction coefficient (λs) - 0.008

Yield limit in terms of suction (SI curve) (s0) MPa 100

Slope of reversible drying-wetting line (κs) - 0.064

Pressure dependent fitting parameter (αp) - 2.8 · 10−6

Initial intrinsic permeability (k0) m2 2 · 10−18

Van Genuchten parameter (α) MPa-1 0.220

Van Genuchten parameter (n) - 1.556
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3.5. Strain localization of Opalinus clay using biaxial test

In the previous section several laboratory tests were elaborated in order to investigate

the mechanical compression behavior using oedometer testing, shear behavior by utilizing

triaxial tests, and the swell phenomena using different swelling tests. As already discussed

in Section 2.6 the most dominant failure mode in the excavation damaged zone is shear

failure, therefore, the development of shear bands is very important to analyze. For that

purpose, plane strain biaxial tests are studied, both in the laboratory and in finite element

simulations.

In the laboratory, remolded Opalinus clay powder was compacted in a purpose built mold

with a target dry density of 2.0 g/cm3, consistent with the previous laboratory tests. The

samples for the biaxial test measured 120mm in height, 100mm in width and 40mm

in depth, as illustrated in Figure 3.18. After the compaction, the sample was placed

in the double wall biaxial test device (Alabdullah and Schanz, 2010) and covered by a

membrane. The double wall biaxial device was filled with water and an isotropic cell

pressure σx = σy = 100 kPa was applied. Then the sample was loaded vertically with a

constant displacement rate of 0.002mm/min until 5% of axial strain. During the test, the

applied vertical displacements uy, the resulting vertical force Fy, as well as the change

in volume ∆V were recorded. The idealization of the previously elaborated boundary

conditions, later used for the numerical modeling, are highlighted in Figure 3.18.

Figure 3.18.: Biaxial test sample geometry and idealization for plane strain modeling
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In Figure 3.19 the deviatoric stress versus axial strain relationship and in Figure 3.20 the

volumetric versus axial strains are illustrated.

As can be seen from Figure 3.19 up to a deviatoric stress q = 1.8MPa the stress-strain

relationship is linear, similar as in the odometer test on dry material (see Section 3.3.1).

Exceeding 1.8MPa deviatoric stress, a small phase with a non-linear stress-strain rela-

tionship can be observed. Starting from axial strain ε1 = 0.12 the sample experienced

softening, followed by a rapid fracture development, which could not be captured in detail

with the installed monitoring system. Therefore, a lack of measurement points can be

seen in both Figure 3.19 and 3.20.
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Figure 3.19.: Biaxial test results in terms of deviatoric stress versus axial strain

0.000 0.005 0.010 0.015 0.020 0.025
Axial strain ε1 [-]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

V
ol
u
m
et
ri
c
st
ra
in

ε v
[-
]

Laboratory

Figure 3.20.: Biaxial test results in terms of volumetric strain versus axial strain
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This indicates a very brittle behavior, which results in both strong softening and very

localized failure of the sample. One possible theoretical model response is also plotted in

Figure 3.19 but will be elaborated later in this section.

As can be seen in Figure 3.20 the sample shows contractive behavior up to an axial strain

ε1 = 0.009, followed by a dilative response with increasing axial strain.

Using linear elasticity theory and the given boundary conditions of the biaxial test, the

Poisson’s ratio ν can be calculated using the following relationship:

νbi =
∆εv −∆ε1

∆εv − 2 ·∆ε1
(3.6)

Assuming linear elastic behavior for the range of axial strains between 0 and 0.010, the

Poisson’s ratio is derived as ν = 0.15 from the biaxial test data, which is in a good

agreement with the triaxial tests, which delivered a Poisson’s ratio of ν = 0.17. The

derivation of the Poisson’s ratio ν as well as the Young’s modulus E is described more in

detail in Appendix B.

The numerical modeling of laboratory tests is typically done using element tests, due to

the clear boundary conditions and the fast calculation time. However, it will be shown

that element tests are not able to capture a localized shear failure. Instead the test was

modeled using a discretized model with the second gradient model as the regularization

technique.

Due to the plane strain nature of biaxial tests, this test is modeled in 2D plane strain

conditions. The bottom of the sample is fixed in vertical direction, while on both sides

and on top, the cell pressure is modeled as a line load. Additionally, the central node at

the bottom is constraint horizontally to prevent rigid body movement. During the test,

the vertical displacements uy of the top nodes of the sample are controlled to match the

applied displacement rate of 0.002mm/min. All boundary conditions of the biaxial test

modeling are illustrated in Figure 3.18.

To model the mechanical behavior, the BBM is utilized again and the mechanical param-

eters obtained for the dry material are used.

In order to capture the linear instead of non-linear behavior of the sample up to a devi-

atoric stress of q = 1.8MPa, a minimum stress pmin can be defined in the BBM in order

to achieve a stress-independent stiffness, as already mentioned in Section 3.3.1.
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To estimate the minimum stress, the bulk modulus K from the laboratory test, calculated

using linear elasticity theory as:

K =
E

3(1− 2ν)
=

∆σ

∆ε
· 1− ν2

3(1− 2ν)
(3.7)

and the bulk modulus K in the BBM, calculated as:

K =
1 + e

κ
· p (3.8)

are considered. By setting the two above terms equal and solving the resulting equation

for p, the minimum stress pmin can be calculated as:

pmin =
K · κ
1 + e

(3.9)

Using Equation 3.9 and the laboratory results, a value of pmin = 7.9MPa is calculated

and subsequently used for the following numerical modeling.

When using element tests, it is not possible to replicate a localized shear fracture as

observed in the laboratory. Therefore, the only way to induce more softening in the

model is by decreasing the compression index λ or increasing κ, as these parameters

govern the plastic volumetric strains (refer to Equation 2.10).

As illustrated in Figure 3.21, the model’s response using the calculated pmin shows good

agreement with the laboratory results in terms of the elastic portion of the deviatoric

stress q versus axial strain ε1 relationship. Additionally, it can be observed that as the

compression index λ decreases, the model’s response becomes softer and aligns more

closely with the measured behavior of the remolded Opalinus clay.

However, since the swell index κ and the compression index λ have already been deter-

mined from oedometer tests, further reduction of these parameters cannot be justified.

Moreover, decreasing the compression index λ is constrained by the requirement that λ

must remain larger than κ (λ > κ) to prevent unintended volume increase during soften-

ing.

To address the limitations mentioned, it is essential to model this test using multiple

elements to allow for localized shear failure. To mitigate the mesh dependency discussed

in Section 2.7.3, the local second gradient method (described in Section 2.7.4) is employed.
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(a) Biaxial test results in terms of deviatoric stress over axial strain
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(b) Biaxial test results in terms of volumetric strain over axial strain

Figure 3.21.: Comparison of simulated biaxial test results for different values of λ with

laboratory results

To make use of this model, the element type SGRT (Corman, 2024) was employed. This

element is based on the previously introduced MWAT2 element and includes additional

degrees of freedom required for the local second gradient model. It is a 2D isoparametric

element with nine nodes. In the eight outer nodes, each node possesses five degrees

of freedom, namely spatial coordinates, water pressure, gas pressure and temperature.

In the four corner nodes, the element includes additional degrees of freedom for the

microkinematic gradient field. The center node contains a degree of freedom for the

Lagrange multiplier field.
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To validate this approach, models with identical dimensions are created using three dif-

ferent mesh sizes, incorporating 184, 800, and 3200 elements. The corresponding element

sizes are 5.2×5mm, 3×2mm, and 1.5×1mm, respectively. In all three models, the same

elastic modulus of the microstructure, denoted as D, is used to act as an internal length

scale. To achieve localized shear failure in this model, an imperfect element with reduced

cohesion is placed in the lower left corner of the numerical model to initiate shear failure.

The significance and effects of imperfections are discussed in more detail in the following

chapters.

The results are presented in Figure 3.22. Only a minor difference between the models with

different mesh sizes during the initial plastic phase is observed, which can be attributed

to the different sizes of the imperfect elements that initiate shear failure. Nevertheless, all

models ultimately yield the same response, demonstrating that the local second gradient

model effectively allows for mesh-independent shear strain localization. To achieve nu-

merical convergence in the simulation, it is necessary to increase the compression index λ

from 0.08 to 0.18. This adjustment is supported by the model’s nearly vertical drop in the

deviatoric stress q versus axial strain ε1 curve, as shown in Figure 3.22a for a compression

index of λ = 0.18. If the compression index λ remain at the laboratory-determined value

of λ = 0.08, the model would exhibit a snapback behavior, as illustrated by the dashed

theoretical curve in Figure 3.19.

Conventional Newton-type iterative strategies, such as those used in the finite element

framework Lagamine applied in this thesis, hold the load parameter constant while it-

erating to convergence. As a result, they often fail to capture structural or material

instabilities like snapback behavior (Kotronis and Collin, 2005). To overcome this limita-

tion, a path-following technique such as the Arc Length Method (Riks, 1979) is required.

Unfortunately, at the time of writing of this thesis, this method has not yet been imple-

mented in the Lagamine finite element code, and therefore the aforementioned limitations

persist.

To illustrate the effect of a thinner shear band, or more localized failure, the model with

3200 elements and a compression index of λ = 0.18 is used with different values of the

elastic stiffness of the microstructure D, which controls the shear band width. As shown

in Figure 3.23, the elastic modulus of the microstructure D influences the model response.

As D decreases, the shear band becomes thinner, resulting in a more localized or softer

model response.
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(a) Biaxial test results in terms of deviatoric stress over axial strain
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(b) Biaxial test results in terms of volumetric strain over axial strain

Figure 3.22.: Comparison of simulated biaxial test results for different mesh densities with

laboratory results

Although the previously discussed limitations still prevent achieving an optimal fit, the

impact of D on the model response is clearly demonstrated. This highlights the impor-

tance of the microstructure’s elastic stiffness in controlling the degree of strain localization

within the model.
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(a) Biaxial test results in terms of deviatoric stress over axial strain
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(b) Biaxial test results in terms of volumetric strain over axial strain

Figure 3.23.: Comparison of simulated biaxial test results for different values of the elastic

stiffness of the microstructure D with laboratory results

In conclusion, element tests alone are insufficient to capture the brittle shear failure of

Opalinus clay during biaxial testing. To address the issue of mesh dependency, the local

second gradient model was successfully implemented, enabling the accurate representa-

tion of localized shear failure. However, to achieve a more precise fit, it is necessary to

implement advanced solving algorithms in the finite element code, which would allow for

the snapback behavior of the sample. It should be noted that the snapback behavior is

only an assumption due to the lack of laboratory measurements during failure.
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With the compression index λ and swell index κ initially determined from oedometer tests,

the elastic modulus of the microstructure D was identified, providing the best possible

agreement with the laboratory results. However, it is important to note that λ was

adjusted to 0.18 to achieve numerical convergence, representing the best case achievable

without implementing advanced solving algorithms. This approach demonstrates the

importance of considering microstructural effects and advanced numerical techniques to

accurately model the complex behavior of Opalinus clay under biaxial loading conditions.



4. Numerical modeling of shear strain

localization

4.1. Introduction

In the previous chapter, constitutive parameters for both intact and remolded Opalinus

clay were derived. For the remolded Opalinus clay, the significance of shear strain localiza-

tion was already demonstrated through a biaxial test conducted in the laboratory. Before

starting the tunnel modeling, it is essential to derive the parameters decisive for shear

strain localization. Due to the inherent complexity, tunnel simulations are not well-suited

for this purpose. Instead, a biaxial test is typically employed, owing to its well-defined

boundary conditions and the reduced complexity of the model, which consequently leads

to shorter computation time.

In this chapter, the numerical modeling of shear strain localization in intact Opalinus clay

is examined through a parameter study based on biaxial tests. The parameters investi-

gated include the element size and the second gradient elastic modulus D, both of which

influence the formation of the shear band. Additionally, various approaches to model-

ing the increase in permeability within the shear band are examined. The fundamental

idea is to utilize shear strain localization to simulate the development of cracks and the

consequent increase in permeability within the damaged zone in the context of contin-

uum mechanics. Two different scenarios are investigated: mechanical shear failure and

wetting-induced failure, both of which are relevant for tunnel simulations. The insights

gained from this study will subsequently be applied in the following chapter to simulate

mechanized tunnel excavation.

The chapter starts with the introduction of the numerical model of the biaxial compression

test in Section 4.2.1, with a focus on the geometry, boundary conditions, and the two

different stress path scenarios. This is followed by a presentation of the parameter study

in Section 4.2.2. In Section 4.3, the results of the parameter study are subsequently

99
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presented and discussed. Finally, a conclusion is provided in Section 4.4, where the

parameters and permeability approaches that proved suitable for the subsequent tunnel

simulation are selected.

4.2. Simulation of biaxial compression test

This section first introduces the geometrical configuration, loading parameters, and bound-

ary conditions of the biaxial compression test simulation. Subsequently, the parameters

and variations examined in the parameter study are presented.

4.2.1. Geometry, loading and boundary conditions

In contrast to Section 3.5, where a biaxial test was modeled to validate the results using

a laboratory experiment, here the model of a biaxial test is employed as a numerical tool

with well-defined boundary conditions to gain a deeper understanding of shear strain local-

ization, in particular the conditions and influences resulting from the choice of constitutive

parameters and the followed stress path leading to shear strain localization. Therefore,

a numerical 2D plane strain model of a biaxial test with a height of 1m and a width of

0.5m is simulated. For the model discretization, the SGRT elements are used again. The

bottom of the model is constrained in the vertical direction and the central node is addi-

tionally constrained horizontally to prevent any rigid body movement. A load boundary

condition is applied to the sides and top of the model, allowing for the establishment of an

initial isotropic stress level. Additionally, a displacement boundary condition is imposed

on the top of the sample to induce shearing. Temperature T and air pressure pa changes

are not considered, and the corresponding degrees of freedom in all nodes of the finite

element model are similarly constrained to T = 293 K and pa = 0.1 MPa, respectively.

The dimensions and boundary conditions of the model are illustrated in Figure 4.1.

To determine the initial stress level and the magnitude of the displacement boundary con-

dition, it is crucial to understand the conditions under which the mechanical constitutive

model leads to shear strain localization. As explained in Section 2.7.1, shear bands form

at failure when the soil exhibits a softening behavior. In clay shales, two mechanisms

may lead to softening from a physical standpoint. First, softening occurs during shear

failure in overconsolidated clays, which exhibit volumetric expansion or dilative soil be-

havior under increased deviatoric stress. Second, in partially saturated soils, softening
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may arise during saturation. When suction decreases, these soils either collapse under

high confining stress or expand under low confining stress.

When considering a Cam-clay type model, such as the applied Barcelona Basic Model

(BBM) (introduced in Section 2.2.3.2), these observations can be modeled.

First, in highly overconsolidated clays, shear bands may form when an increase in devi-

atoric stress q causes the yield surface to be reached on the left side, also known as dry

side, resulting in volumetric expansion or dilative soil behavior illustrated in Figure 4.1a,

hereinafter referred to as shearing path. Second, specific to the BBM, softening may occur

when partially saturated soils (s > 0) become fully saturated (s = 0), and the stress state

before saturation is in the vicinity of the yield surface. In this case, the yield surface

shrinks as suction decreases, leading to softening behavior as depicted in Figure 4.1b,

hereinafter referred to as wetting path. The shearing path is particularly relevant for

tunnel excavation in nearly fully saturated, highly overconsolidated clay shales, where

the excavation process results in the unloading of the surrounding formation, leading to

an increase in deviatoric stress q. Additionally, the wetting path may become relevant

in cases where excavation occurs in partially saturated clay rock. Although the initial

increase in deviatoric stress q might not cause the yield surface to be reached due to the

larger yield surface under partially saturated conditions, saturation can occur, potentially

leading to yield surface shrinkage and subsequent material softening and strain localiza-

tion. Both scenarios are critical for modeling tunnel excavation in clay shales, making

them essential aspects in setting up initial stress conditions and boundary displacements

in the numerical model.

The boundary conditions for the shearing path model are illustrated in Figure 4.1a. To

achieve initial fully saturated conditions, the pore water pressure pw is initially set equal

to the air pressure pa = 0.1MPa, resulting in an initial suction s = 0. The pore wa-

ter pressure pw is fixed only at the nodes located at the top and bottom of the model

throughout the simulation, facilitating local drainage at these boundaries. To ensure that

the stress path touches the yield surface on the left side, a low initial confining stress of

σx = σy = 0.9MPa is applied. An increase in deviatoric stress q is simulated by incre-

mentally increasing the vertical displacement uy at the top of the sample, with a constant

loading strain rate of 5× 10−7 s−1 until a vertical displacement uy = 0.05m is reached.

In the wetting path scenario, the sample is initially partially saturated with an initial

suction s = 20.1MPa, as illustrated in Figure 4.1b. To achieve this, the pore water

pressure in all nodes is set to pw = −20MPa. The initial confining stress is selected as

0.6MPa. The displacement boundary condition at the top of the sample is applied with
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(a) Shearing path (b) Wetting path

Figure 4.1.: Numerical models of a plane-strain biaxial compression test

a strain rate of 1.6 × 10−6 s−1 until a vertical displacement uy = 0.016m is reached. At

this point, the current stress level is still within the elastic range but close to the yield

surface. Following this, suction is reduced by linearly decreasing the pore water pressure

in all nodes from pw = −20MPa to 0.1MPa. This reduction in suction causes the yield

surface to shrink, leading to softening of the material and causing the elements to enter

plasticity.

Additionally, a material imperfection is incorporated into the numerical model to ensure

robust shear strain localization. Since the element with material imperfection transitions

into plasticity before other elements, it initializes the shear band. This imperfect element

is introduced at the bottom left of the sample, as illustrated in Figures 4.1a and 4.1b.

For the shearing path, the material imperfection is not strictly necessary due to the

anisotropic stress conditions and the local drainage, resulting in a non-uniformed stress

state within the model. However, it has been shown by Pardoen, Seyedi and Collin (2015)

that the material imperfection is essential for models with uniform stress state, as in the

investigated wetting path scenario, because all elements exhibit almost identical stress

states leading to a diffuse failure without any localization. Therefore, an imperfect element
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is included in both, the shearing and wetting path scenarios, to maintain consistency

between them.

The material imperfection involves degrading the parameters of the constitutive model

that influence the onset of plasticity. Within the framework of the BBM used in this

study, possible parameters include the shear strength parameters φ and c, as well as the

preconsolidation pressure P0, all directly affecting the size of the yield surface. For this

study, the cohesion is gradually reduced until a point is reached where robust shear strain

localization is achieved. As a result, the cohesion is reduced from 2MPa (see Table 3.5)

to 1.5MPa for the wetting path and to 1.75MPa for the shearing path. The impact of the

imperfection on the formation of shear bands will be analyzed in detail in the framework

of the tunnel simulations presented in Chapter 5.

4.2.2. Parameter study of the biaxial compression test

A parameter study is a critical step for complex numerical models, enabling the systematic

exploration of how variations in input parameters influence the model’s outcomes. This

approach is particularly essential when dealing with parameters that cannot be directly

obtained from laboratory tests, such as material constants or boundary conditions. Since

these parameters often rely on assumptions or estimations, a parameter study helps to

identify their impact on simulation accuracy and reliability.

Since the mechanical and hydraulic constitutive parameters are already well-established

through an extensive literature review (see Section 3.2), this parameter study focuses

primarily on shear strain localization. Therefore, the constitutive model parameters from

Table 3.5 are utilized. From the three determined values of the slope of the reversible

drying-wetting line, κs, the value κs,⊥,CV = 0.0029 (see Table 3.5) is selected. This choice

is made because the constant volume condition more closely aligns with the boundary

conditions in both the biaxial test and the mechanized tunnel excavation scenario. More-

over, since the direction perpendicular to the bedding plane generates more swelling than

the direction parallel to the bedding, this parameter is chosen accordingly.

It should be noted that for the following simulations, exclusively the BBM with the pa-

rameters obtained for intact Opalinus clay shale is used. The calibration of the additional

BBMEx parameters was not possible due to the lack of deformation-controlled swelling

tests on intact Opalinus clay shale.

The local second gradient model, as discussed in Section 2.7.4, is employed for mesh-

independent analysis of shear band localization. Consequently, the influence of the pri-
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mary model parameter of the local second gradient model, the elastic modulus of the

microstructure D, which directly influences the width of the shear band, is studied.

Specifically, a smaller value of the elastic modulus of the microstructure D results in

a thinner shear band. The values of the elastic modulus of the microstructure D that are

investigated within this parameter study can be found in Table 4.1.

To ensure a clear localization, it is crucial that the shear band covers a sufficient number of

elements. For instance, the shear band should ideally encompass at least three elements,

according to Pardoen, Seyedi and Collin (2015), in the direction perpendicular to the

shear band. This ensures a well-defined shear band that can be clearly differentiated from

the surrounding material, allowing for a more precise analysis of the strain localization

and the associated mechanical behavior. Therefore, three different element sizes (0.042×
0.042m, 0.025 × 0.025m and 0.015 × 0.015m) are investigated while keeping all other

parameters constant. The three meshes including 288, 800 or 2312 elements are illustrated

in Figure 4.2.

It is important to note that the study with mesh variation is conducted only for the

shearing path scenario. Given that the use of the local second gradient model ensures

mesh-independent simulations, as demonstrated in Section 3.5, the goal of this investiga-

tion is to determine the minimum element size that allows for a reliable and well-defined

shear band localization while remaining computationally efficient. Once this optimal ele-

ment size is identified, it is used for further parameter studies.

In the parameter study on the influence of the element size and the elastic modulus of the

microstructure D, the evolution of permeability within the shear bands is not considered.

This simplification is made to better analyze the influence of these two parameters in

isolation.

Another parameter study, which focuses on changes in permeability within the shear

band is conducted for both scenarios, namely the shearing path and the wetting path.

This study examines two approaches introduced in Section 2.8: the volumetric strain-

dependent method (see Equation 2.51) and the deviatoric strain-dependent method (see

Equation 2.52). The variations in parameters for each method are presented in Table 4.2.

The variables highlighted in bold in Tables 4.1 and 4.2 represent the reference values for

each parameter. During the analysis, only one parameter is varied at a time, while all

other parameters are held constant at their reference values, in order to isolate the effect

of the individual parameter on the results. The next section presents and discusses the

outcomes of the performed parameter studies.
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(a) coarse mesh

0.042× 0.042m

288 elements

(b) medium mesh

0.025× 0.025m

800 elements

(c) fine mesh

0.015× 0.015m

2312 elements

Figure 4.2.: Comparison of different element sizes for the biaxial compression test

Table 4.1.: Sets of values in the parameter study on the influence of element size and

second gradient elastic modulus for the numerical models of the biaxial compression test

Shearing Path

Parameter Set of Values

Element size (m×m)

0.015× 0.015

0.025× 0.025

0.042× 0.042

Second gradient elastic modulus D (N)

500

1000

2000

5000

Wetting Path

Second gradient elastic modulus D (N)

500

1000

2000

5000
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Table 4.2.: Sets of values in the parameter study using different permeability evolution

methods for the numerical models of the biaxial compression test

Shearing Path

Method Parameter Set of Values

Volumetric strain-dependent Permeability evolution parameter βper

2× 106

2× 107

2×108

2× 109

Deviatoric strain-dependent

Permeability evolution parameter βper

3× 103

3×104

3× 105

3× 106

Threshold yield index Y Ithr

0.80

0.85

0.90

0.95

Wetting Path

Volumetric strain-dependent Permeability evolution parameter βper

3× 108

3× 109

3×1010

3× 1011

Deviatoric strain-dependent Permeability evolution parameter βper

4.6× 104

4.6× 105

4.6×106

4.6× 107
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4.3. Results and Discussion

In this section, the results of the previously elaborated parameter study are presented

and discussed. First, the results of the mesh study are analyzed to determine a suitable

mesh discretization for the subsequent parameter variations. Second, the influence of the

elastic modulus of the microstructure D is examined. Furthermore, different permeability

evolution methods are evaluated by studying the relevant model parameters.

4.3.1. Effect of element size

As described in Section 4.2.2, a mesh study is conducted for the shearing path scenario

using three different element sizes (see Figure 4.2). For all three models, a constant value

of the elastic modulus of microstructure is set at D = 500N. The total deviatoric strains

after 100, 000 s ≈ 28 h are evaluated, indicating the end of the loading. As a scalar measure

the von Mises equivalent strain εeq is used to quantify the intensity and distribution of

the deviatoric strain for the three biaxial models. The results are shown in Figure 4.3.

To avoid the influence of the chosen upper and lower limits of the contour plots (see

Figure 4.3), the plastic points, which represent the integration points in plasticity, are

additionally illustrated in Figure 4.4, allowing a clear distinction of the shear bands.

Upon comparing the three different meshes, it can be observed that a shear band forms

with a similar width ranging from 0.12m (fine mesh) to 0.15m (coarse mesh). This

confirms that the local second gradient model allows for mesh-independent shear strain

localization. The minor differences arise from the fact that the models are not perfectly

identical, as the imperfect elements introduced by the respective meshes differ in size, as

noted in Bésuelle et al. (2006). Additionally, as the element size increases, the resolution

also diminishes, making it more difficult to clearly distinguish between the shear band

and the surrounding zone.

However, additional insights can be drawn from the mesh study. For the subsequent

application of the model, particularly for simulating the permeability increase within the

shear band, it is advantageous if the shear band spans a sufficient number of elements

in the direction normal to the shear band propagation. This ensures a clear distinction

between the shear band and the surrounding elements.

A visual comparison of the three models regarding the deviatoric strains reveals no signif-

icant difference between the medium and the fine mesh. Both meshes also exhibit enough

elements within the shear band to provide a distinct demarcation. Only for the plastic
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points shown in Figure 4.4, differences can be observed in the lower boundary area of the

specimen. However, no significant differences are present in the region of the shear band.

Therefore, due to the reduced computational effort, the model with the medium mesh

(0.025× 0.025m) is selected for all subsequent simulations.
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Figure 4.3.: Total deviatoric strain within the numerical biaxial model subjected to a

shearing path for three different element sizes (time = 100,000 s, D = 500N)
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Figure 4.4.: Plastic points within the numerical biaxial model subjected to a shearing

path for three different element sizes (time = 100,000 s, D = 500N)
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4.3.2. Effect of second gradient elastic modulus

This section investigates the influence of the second gradient elastic modulus D on shear

band development, focusing on both the shearing path and wetting path scenarios. As

outlined in Table 4.1, four different values for D are examined: 500N, 1000N, 2000N,

and 5000N. Initially, the shearing path scenario is considered. For comparison purposes,

Figures 4.5 and 4.6 illustrate the total deviatoric strains and plastic points, respectively,

after 100,000 s for each investigated value of D.

As anticipated, D directly impacts the shear band width. Specifically, the higher the

value of D, the wider the resulting shear band. For D = 500N, the shear band spans

approximately 3.5 to 4 elements in width, corresponding to a width of 0.14m. In contrast,

for D = 5000N , the shear band encompasses 6 elements, resulting in a shear band width

of 0.25m.

Although the imperfection is placed in the lower left corner of the model, the shear band

initiates at this location but subsequently migrates upward during ongoing deformation.

This upward movement can be attributed, among other factors, to the evolving stress

path inhomogeneities caused by the local pore water pressure buildup. Such migration of

shear bands during shear deformation has also been observed and discussed by Bésuelle

et al. (2006).

It is evident in Figures 4.5 and 4.6 that as the shear band width decreases, the maximum

value of the total deviatoric strain within the shear band increases. Specifically, in the case

of D = 5000N, the maximum deviatoric strain amounts εeq ≈ 0.15, while for D = 500N,

it increases to εeq ≈ 0.30, representing a doubling of the strain value. This observation can

be explained, as with the same global deformation of the specimen, the failure becomes

much more localized, occurring over half the area. Consequently, the deviatoric shear

strains must be correspondingly higher.

Before presenting the results of the parameter study for the wetting path scenario, it

is first necessary to address the different stress paths involved. In the shearing path

scenario, axial deformations are continuously increased, and initially, all elements of the

model follow a comparable stress path. The stress path is not uniform within the model

due to pore water pressure buildup in the model center, which results from the hydraulic

boundary conditions allowing drainage only at the top and bottom, combined with the

low permeability of the material. By placing an imperfect element in the lower left corner

of the model, this element reaches the plasticity limit first, aiding in the formation of the

shear band. The elements along the shear band, as shown in Figure 4.7a, reach the yield
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Figure 4.5.: Total deviatoric strain within the numerical biaxial model subjected to a

shearing path for different second gradient elastic moduli (time = 100,000 s)
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Figure 4.6.: Plastic points within the numerical biaxial model subjected to a shearing

path for different second gradient elastic moduli (time = 100,000 s)

surface on the dry side, leading to softening until the critical state line (CSL) is reached.

Due to the localization and formation of the shear band, the surrounding elements are

unloaded and deform fully elastically, as illustrated in Figure 4.7b, preventing them from

reaching the yield surface.
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−5 0 5 10 15 20 25 30 35
Net mean stress p [MPa]

0

5

10

15

20

25

30

D
ev
ia
to
ri
c
st
re
ss

q
[M

P
a] CSL

Stress path

YS inital

YS inter

YS final

(b) Element outside of the shear band

Figure 4.7.: Stress path of biaxial test in the shearing path scenario

In contrast, the wetting path scenario presents a more complex behavior. Initially, axial

deformations increase the deviatoric stress q, with all elements remaining in the elastic

range, as depicted in Figure 4.8. During this phase, pore water pressure buildup is

prevented, resulting in a uniform stress state across the model. Consequently, both the

elements inside (see Figure 4.8a) and outside (see Figure 4.8b) the eventual shear band

follow the same stress path. Once the top boundary is fixed against deformation and the

pore water pressure is increased in every node, swelling pressure develops, which will be

analyzed in detail afterwards, causing a further increase in deviatoric stress q, marked

by a noticeable kink in the stress path due to the different inclination. As saturation

increases, the stress path moves along the suction axis. When the stress path is plotted
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in a p−q space, it becomes evident that with decreasing suction the yield surface shrinks.

This reduction in the size of the yield surface, when viewed solely within the p− q space,

corresponds to a form of softening.

The imperfect element reaches the yield surface before the rest of the model, initiating

shear strain localization and resulting in elastic unloading outside the shear band. At this

stage, two competing processes occur in the elements outside the shear band: unloading

due to localization and an increase in deviatoric stress q alongside the shrinking yield

surface due to swelling. Until 95,000 s, indicated by a red dot in Figure 4.8, a distinct

shear band forms (see Figure 4.9a), but as saturation continues, the stress path of elements

outside the shear band eventually touches the yield surface, transforming all elements into

plasticity, as illustrated in Figure 4.9b.

For better understanding, the axial pressure derived from the y-reaction forces at the top

of the sample over time is shown in Figure 4.10. Up to 10,000 s (I), the pressure increases

due to the application of axial deformations. As the sample is gradually saturated while

maintaining axial movement constraints, a swelling pressure of approximately 4MPa de-

velops, highlighted by the gray area in Figure 4.10 (II). Around 84,000 s, a shear band

forms (III), leading to localized failure, which is reflected by a decrease in axial pressure.

When all elements are in wetting-induced plasticity t > 95, 000 s an even softer model

response is visible, indicated by a further kink in axial pressure in Figure 4.10.

Having analyzed the differences between the two scenarios, the influence of the second

gradient elastic modulus D on shear band formation is examined for the wetting path

scenario. Since the objective of this study is to model the permeability change at the shear

band, only the final time step exhibiting localized deformation (95,000 s) is analyzed for

the wetting path scenario. Similar as for the shearing path scenario the total deviatoric

strain as well as the plastic points are evaluated, and these are depicted for various values

of D in Figures 4.11 and 4.12, respectively. Similar to the shearing path scenario, the

influence of the second gradient elastic modulus D on the shear band width and the

maximum deviatoric strain within the shear band is evident. As D decreases, the shear

band width narrows, reducing the area of the shear band, which in turn increases the

maximum value of the deviatoric strains. For D = 5000N, the shear band encompasses

approximately four elements in the direction normal to the shear band, corresponding to

a shear band width of 0.14m. In contrast, for D = 500N, the shear band encompasses

only about two elements, resulting in a shear band width of approximately 0.07m.

When examining the deviatoric strains, there is a clear trend: from D = 5000N with

deviatoric strains εeq ≈ 0.03 to D = 500N with deviatoric strains εeq ≈ 0.06, showing
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Figure 4.8.: Stress path of biaxial test in the wetting path scenario

a doubling of the deviatoric strains, similar to what was observed in the shearing path

scenario and the same explanation can be applied here.

Comparing the shear bands for the same value ofD between the shearing path and wetting

path scenarios reveals significant differences in both shear band width and maximum

deviatoric strain values and location. This difference can be explained by the distinct

stress paths, which have already been discussed and illustrated for both scenarios. These

stress paths are shown for an element on the shear band and one adjacent to the shear

band in Figures 4.7 and 4.8, respectively. Due to the concurrent processes in the wetting

path scenario, namely, the increase in deviatoric stress from swelling and the softening due

to saturation, all elements of the model remain very close to the yield surface. Under these
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Figure 4.9.: Plastic points within the numerical biaxial model subjected to a wetting path

for different time steps
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Figure 4.10.: Temporal evolution of the axial pressure in biaxial testing during wetting

path scenario

conditions, localized failure can occur only if the unloading from shear strain localization

exceeds the buildup of swelling pressure. This constraint provides a potential explanation

for why the location of the shear band does not change over time compared to the shearing

path scenario, where it moves upward. The distinctly different stress paths and the

resulting variations in softening make a direct comparison of the shear band widths not

reasonable.
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Figure 4.11.: Total deviatoric strain within the numerical biaxial model subjected to a

wetting path for different second gradient elastic moduli (time = 95,000 s)
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Figure 4.12.: Plastic points within the numerical biaxial model subjected to a wetting

path for different second gradient elastic moduli (time = 95,000 s)

In summary, the second gradient modulus D has a clear and significant impact on both

the shear band width and the maximum value of the deviatoric strains within the shear

band. As D decreases, the shear band width narrows, while the maximum value of the

deviatoric strains increases, regardless of the scenario being examined (shearing path or
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wetting path). Given that both the shear band width and the maximum deviatoric strain

are critical parameters for the subsequent analysis of permeability within the shear band,

it is essential to make informed assumptions regarding the second gradient elastic modulus

D.

Ideally, this decision would be based on results from biaxial tests conducted in the labora-

tory, preferably with x-ray microtomography to visualize the shear band (see Section 2.6).

However, in the absence of such data, the simulation will proceed with the value of D

that produces a shear band width covering approximately three elements, ensuring a clear

distinction between the shear band and the surrounding elements. For the shearing path

scenario, this corresponds toD = 500N, and for the wetting path scenario, toD = 2000N.

It is important to note in this context that the chosen shear band width is likely broader

than the actual fracture width expected in reality. However, literature suggests that

permeability increases not only within the damaged area but also in its immediate vicinity,

which justifies the selection of these values.

With a suitable element size and corresponding local second gradient elastic moduli D

now established, the focus can shift to analyzing the permeability increase within the

damaged zone, which in this study is modeled as shear bands.

4.3.3. Effect of different permeability evolution methods during

shearing path

As discussed in Section 2.4, in-situ measurements have shown that permeability within the

Excavation Damaged Zone (EDZ) significantly increases compared to the intact formation.

The primary reason for this is the propagation of cracks and other forms of damage, which

result in higher permeability compared to the intact material. To numerically model

this phenomenon, various approaches have been proposed in literature, as explained in

Section 2.8. Given the complexity and computational intensity of simulating a full tunnel

excavation, it was decided, similar to the previous section’s approach regarding element

size and the second gradient elastic modulus D, to investigate different permeability

models through a parametric study using biaxial tests, with the previously determined

mesh and second gradient elastic modulus of D = 500N.

In this study, three permeability models, namely the porosity-dependent (Equation 2.48),

the deviatoric strain-dependent (Equation 2.52), and the volumetric strain-dependent

method (Equation 2.51), are examined. To illustrate the fundamental differences among
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these models, Figure 4.13 presents the input variables (porosity, volumetric strain, and

deviatoric strain) in the top row as well as the resulting permeability evolution
kw,ij

kw,ij,0
in

the bottom row. Here,
kw,ij

kw,ij,0
represents the change in permeability relative to the initial

permeability kw,ij,0. It should be noted that in Figure 4.13 (top row), various quantities

are presented that, while related to the shear bands, are not directly comparable due to

their nature as different quantities. Therefore, the term ”band” is used in the following.

Figures 4.13a and 4.13d illustrate the variation in porosity and the corresponding per-

meability evolution, respectively, using the porosity-dependent Kozeny-Carman method

(Equation 2.48). As observed in Figure 4.13a, a band forms where the porosity is slightly

higher than in the rest of the model. When comparing the porosity within and outside this

band, the changes are minimal, amounting approximately 0.01. Consequently, as shown

in Figure 4.13d, the permeability increase within this band is also minor, with a maximum

value of
kw,ij

kw,ij,0
≈ 1.1. Outside the band, however, permeability decreases compared to the

initial value. This can be attributed to the initial compaction of the specimen caused by

the applied vertical deformation, leading to a global reduction in porosity.

It is important to emphasize that the original Kozeny-Carman model, which underpins

the porosity-dependent method, does not contain any fitting parameters. This inherent

characteristic further limits its flexibility in accurately capturing significant permeability

changes, particularly within localized shear bands. The absence of adjustable parameters

means that the model is constrained by the direct relationship between porosity and per-

meability, which, as observed, leads to only minimal changes in permeability within the

band. This is significantly different in case of the volumetric strain-dependent and devia-

toric strain-dependent methods, where permeability increases by a factor of 100 compared

to the initial value, whereas this method shows only an increase of 1.1 times the original

permeability. These alternative methods will be described in detail in the following. Con-

sequently, the Kozeny-Carman model is not suitable for effectively capturing significant

permeability changes within the shear band when used in combination with the Barcelona

Basic Model (BBM).

In Figures 4.13b and 4.13e, the plastic volumetric strains and the corresponding per-

meability changes are depicted. Similar to the previously discussed porosity-dependent

method, a broad band forms, with concentrated maxima of volumetric strains at the ends

of the band. Since plastic volumetric strains are the critical input parameter for the volu-

metric strain-dependent method (as per Equation 2.51), this behavior is directly reflected

in the permeability increase (see Figure 4.13e).
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(a) Porosity-dependent

method
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(b) Volumetric

strain-dependent method
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(c) Deviatoric

strain-dependent method
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(f) Deviatoric

strain-dependent method

Figure 4.13.: Comparison of different methods of permeability evolution within the nu-

merical biaxial model subjected to a shearing path (time = 100,000 s, D = 500N)

By adjusting the evolution parameter βper, the permeability increase can be calibrated to

a desired level. In the present case, a value of βper = 2× 108 is employed, resulting in an

approximate permeability evolution ratio of
kw,ij

kw,ij,0
= 50 at the band’s central region. The

influence of βper will be analyzed more thoroughly in Section 4.3.4, within the context
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of an additional parameter study. This adjustment capability allows the model to better

simulate the substantial permeability changes observed in damaged zones, making it more

suitable for representing the conditions within shear bands.

When considering the deviatoric strain-dependent method, it can be observed in Fig-

ure 4.13c that a thinner band, compared to the two other methods, develops. This can

also be observed in the permeability increase shown in Figure 4.13f. Unlike the other

two methods, the permeability is more homogeneously distributed along the band and

is not concentrated at the ends. The deviatoric strain method, in addition to the evo-

lution parameter βper, also uses the threshold yield index Y Ithr as an input parameter

(see Equation 2.52). In the present case, calculations are performed with βper = 2.3× 104

and Y Ithr = 0.9. The influence of these two parameters is also examined in an additional

parameter study, see Section 4.3.5 and 4.3.6.

To ensure a more systematic evaluation and better comparability between the methods,

the increase in permeability along a vertical cross section is considered. To find a suitable

location, two possible cross sections, illustrated in Figure 4.14, are analyzed. The two

sections are chosen once in the center of the model (w/2) and once close to the edge of

the model (w/10) to examine the permeability distribution along the shear band. Since

Figure 4.13 already indicates that the porosity-dependent method is unsuitable, it is no

longer considered in further analyses.

Figure 4.15 illustrates the differences between the two strain-dependent permeability evo-

lution methods along both cross sections. For the volumetric strain-dependent method,

there is a clear difference in permeability evolution ratios
(

kw,ij

kw,ij,0

)
between cross section

w/10 and w/2. In this method, the ratio drops significantly from about 105 at cross

section w/10 to around 50 at cross section w/2. In contrast, the deviatoric method shows

a decrease from about 100 to 80 between both cross sections, resulting in a more uniform

permeability distribution along the band. Since differences only emerged in the volumet-

ric strain-dependent method, and these are due to a concentration of volumetric strains

at the model boundaries, all subsequent results will be analyzed along the center of the

model (cross section at w/2).

In the following sections, the input parameters of the volumetric strain-dependent and

deviatoric strain-dependent models will be analyzed in more detail through a parameter

study.
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Figure 4.14.: Positions of analyzed cross sections of the numerical biaxial model
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Figure 4.15.: Comparative analysis of strain-dependent permeability evolution methods

along two vertical cross sections (see Figure 4.14) in the biaxial model subjected to a

shearing path



4.3. Results and Discussion 121

4.3.4. Effect of the evolution parameter βper on volumetric

strain-dependent permeability evolution

In this subsection, the influence of the evolution parameter βper in the volumetric strain-

dependent permeability evolution method is analyzed. As shown in Equation 2.51, βper

is the sole fitting parameter. To systematically investigate the influence of βper on the

model, the relative change in permeability with respect to the initial permeability
kw,ij

kw,ij,0
is

examined at the end of the loading phase (after 100,000 s). Since the change in permeabil-

ity also affects the pore water pressure development, which in turn influences the stress

path due to hydro-mechanical coupling, the relative change in pore water pressure pw
pw,0

is

also analyzed. The permeability evolution is depicted in Figure 4.16b and the change in

pore water pressure in Figure 4.16c.

As evident in Figure 4.16b, an increase in βper results in a corresponding increase in

permeability. As βper increases from 2× 106 to 2× 109, the permeability evolution ratio

shifts from 1.5 to 493, representing an increase of approximately 330 times. The width

over which the permeability increases is only minimally affected by βper, indicating that

βper primarily influences the magnitude of the permeability increase.

When examining the changes in pore water pressure, a significant influence is evident. Due

to the low permeability of Opalinus clay, the applied vertical displacements lead to an

increase in pore water pressure, particularly in the center of the sample, as this region has

the longest drainage path. Once the shear band forms, dilative behavior occurs within the

shear band, leading to a reduction in pore water pressure. Additionally, as permeability

increases, the pore water pressure can dissipate more rapidly. This effect is also observable

in Figure 4.16c, where, for the highest value of βper, the relative pore water pressure is

at its lowest. At the sample’s mid-height, the relative pore water pressure decreases by

about 21% as βper is reduced from 2× 106 to 2× 109.

It is also noteworthy that for βper = 2×107 to 2×109, the maximum change in pore water

pressure remains constant across the entire width of the band, whereas for βper = 2×106,

a more pronounced peak is observed. This can be explained by the fact that in the latter

case the permeability is similarly low both inside and outside the shear band.

In summary, it can be stated that βper has a significant impact on the magnitude of

permeability within the shear band. However, the width over which this change occurs

is practically independent of βper. The next section will focus on the deviatoric strain-

dependent method.
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Figure 4.16.: Effect of βper on volumetric strain-dependent permeability evolution method

in the biaxial model subjected to a shearing path
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4.3.5. Effect of the evolution parameter βper on deviatoric

strain-dependent permeability evolution

In this section, the influence of the evolution parameter βper on the predictions with

the deviatoric strain-dependent method is examined. Unlike the previous method, the

deviatoric strain method has two key fitting parameters: the threshold yield index (Y Ithr)

and the evolution parameter βper. To isolate the influence of βper, Y I
thr is fixed at 0.90

for this parameter study. Similar to the volumetric strain method, βper in this context

governs the evolution of permeability, but here it is dependent on deviatoric strains.

As in the previous section, the development of permeability and pore water pressure along

the center of the model is analyzed, as shown in Figure 4.17. Furthermore, the current

yield index Y I and the deviatoric strains εeq, which are the model inputs determining

the permeability evolution are depicted in Figures 4.17a and 4.17b, respectively. A clear

trend emerges, indicating that βper influences the magnitude of the buildup, as well as the

dissipation of excess pore water pressure caused by vertical deformations (4.17d). Since

the values of deviatoric strains and volumetric strains are not directly comparable, a direct

comparison of the two methods using the same βper value is not meaningful.

Unlike the volumetric strain-dependent method, the permeability evolution significantly

varies across the height of the shear band. A peak is observed in the middle of the band

because the highest deviatoric strains occur in the center of the shear band, as shown

in Figures 4.13c and 4.17b. Furthermore, the permeability change is also influenced by

the difference between the current yield index Y I and the threshold yield index Y Ithr,

as described in Equation 2.52. In the center of the shear band the yield index equals

one, meaning that the stress path is on the yield surface, while at the edges of the shear

band, the values are below one as illustrated in Figure 4.17a. This also contributes to the

observed peak formation. This aspect will be further explored in the next section, which

examines the influence of the threshold yield index Y Ithr.

The changes in pore water pressure (4.17d) lead to the same conclusions as in case of the

volumetric strain-dependent method (see Section 4.3.4).

When comparing the zone where the yield index Y I exceeds the threshold value of Y Ithr =

0.9, highlighted by a gray region in Figure 4.17a, with the permeability evolution in

Figure 4.17c, a broader area of increased permeability can be observed. An explanation

can be derived from Figure 4.18, which illustrates a comparison of key model inputs and

results, including the yield index (Y I), deviatoric strain (εeq), pore water pressure (pw),

and permeability (kw). These quantities are presented for two values of the deviatoric
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strain-dependent permeability evolution parameter, βper = 3× 103 and βper = 3× 106, at

a time before strain localization (t = 45, 000 s). Even before localization occurs, a yield

index Y I greater than Y Ithr = 0.9 is found in the center of the model, as illustrated in

Figures 4.18a and 4.18e.

This phenomenon can be analyzed by considering the stress path of an element located

at the center of the model, as depicted in Figure 4.19. As axial deformation increases,

deviatoric stress q rises. Due to the low permeability of Opalinus clay, an excess pore

water pressure develops in the model’s center, as illustrated in Figures 4.18c and 4.18g,

reducing the effective stresses. At the time step of t = 45, 000 s, the element is already

close to the yield surface, as depicted by the red point in Figure 4.19. This explains why a

yield index Y I greater than 0.9, as well as deviatoric strains εeq, are present in the center

of the model.

Depending on the chosen βper, this leads to varying range of permeability increase, as

illustrated in Figures 4.18d and 4.18h for βper = 3× 103 and βper = 3× 106, respectively.

With βper = 3× 103, the permeability increase in the model’s center is minimal, whereas

with βper = 3 × 106, a significant increase up to 10 times the initial permeability is

observed. This early increase in permeability, before localization, is visible in Figure 4.17c.

Therefore, the selection of a proper value for the threshold yield index Y Ithr and the

evolution parameter βper is crucial for accurate modeling.

For a comprehensive understanding of this method, the following section will analyze the

influence of the threshold yield index Y Ithr.
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Figure 4.19.: Stress path of the central element of the biaxial model in the shearing path

scenario with deviatoric strain-dependent permeability method

4.3.6. Effect of the threshold yield index Y I thr on deviatoric

strain-dependent permeability evolution

As in the previous section, the two input variables, the yield index Y I and deviatoric

strain εeq, along with the output variables, the permeability evolution and the pore water

pressure change, are examined along the center of the model and are shown in Figure 4.20.

Four different threshold yield index values are analyzed, as outlined in Table 4.2. The

evolution parameter is kept constant at βper = 3× 105 for this study.

Apparently the yield index equals one on the shear band, while outside the shear band the

yield index is 0.8 or lower, as can be seen in Figure 4.20a. This allows for a clear distinction

between the inside and outside of the shear band. As for the resulting permeability change,

only minor differences are observed. The width of the zone with increased permeability

is similar, although it becomes slightly broader with lower Y Ithr values. The maximum

permeability increase on the shear band is higher for lower Y Ithr, primarily because the

calculation incorporates the difference between the current Y I and the threshold, as

described in Equation 2.52.

The change in pore water pressure correlates with the permeability change and can be

explained, as previously, by the faster dissipation of pore water pressure due to increased

permeability.
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While the parameter study identifies minor differences in permeability changes when

varying Y Ithr between 0.80 and 0.95, the overall impact on permeability evolution remains

rather small. Therefore, within this specific case, adjusting the threshold yield index has

only a limited influence on the spatial extent of the material’s permeability evolution.

However, as noted by Pardoen (2015), the threshold yield index plays a more significant

role in modeling scenarios such as tunnel excavations, where it can be critical for capturing

the extent of the increased permeability zone accurately.
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4.3.7. Effect of different permeability evolution methods during

wetting path

In this section, the various permeability methods are investigated using the biaxial test

model that follows the wetting path. The fundamental differences from the shearing

path scenario were already discussed in Section 4.3.2. As an initial assessment, the input

parameters of the two examined permeability models, volumetric strain and deviatoric

strain, and their resulting permeabilities are shown in Figure 4.21. As highlighted in

Section 4.3.3, the porosity-dependent Kozeny-Carman method is not suitable for achiev-

ing significant permeability increases in the shear band, and therefore it is not further

considered in this section. The analysis focuses on the time up to the last stage of local-

ized failure at 95,000 s. All models presented here are computed with a second gradient

parameter of D = 2000N.

As with the shearing path scenario, the resulting permeability change within the band

in the case of the deviatoric strain-dependent method is more homogeneous than that of

the volumetric strain-dependent method. However, unlike in the shearing path scenario,

the band of increased permeability is similarly wide. This occurs because the wetting

path scenario generally exhibits less softening, leading to lower volumetric strains. Fur-

thermore, the movement of the shear band is restricted as all elements outside the initial

shear band are very close to plasticity, with high yield indices, preventing shear band

movement.

For a systematic evaluation, the two cross sections, w/10 and w/2 (see Figure 4.14), are

analyzed, as presented in Figure 4.22. Similar to the shearing path, there is a concentra-

tion of volumetric strain at the model boundaries, which leads to an increased permeability

in the volumetric strain-dependent method. Given the existence of a more homogeneous

zone within the model center, cross section w/2 is selected for subsequent analysis.
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(c) Volumetric strain-dependent method
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Figure 4.21.: Comparison of permeability evolution within the numerical biaxial model

subjected to a wetting path. Left: volumetric strain-dependent method; Right: deviatoric

strain-dependent method (time = 95,000 s, D = 2000N)
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Figure 4.22.: Comparative analysis of strain-dependent permeability evolution methods

along two cross sections in the biaxial model subjected to a wetting path

4.3.8. Effect of βper on volumetric strain-dependent permeability

evolution

This section investigates the influence of the evolution parameter βper of the volumetric

strain-dependent permeability evolution method (see Equation 2.51). The plastic volu-

metric strains, which are an input for this method, and the resulting permeability changes

along the cross section w/2 are shown in Figure 4.23. Four simulations are conducted with

βper = 3 × 108, 3 × 109, 3 × 1010, and 3 × 1011. Since in the wetting path scenario the

pore water pressure is globally prescribed at all nodes to achieve saturation, it is not

displayed here. Figure 4.23a illustrates that plastic volumetric strains of approximately

0.0015 develop, with an identical distribution over the height for all four values of βper.

This can be explained by the global prescription of pore water pressure, resulting in the

same effective stresses during localization and, consequently, no variation in the resulting

volumetric strains. When comparing the volumetric strains between the two scenarios,

wetting path and shearing path, it becomes evident that significantly smaller volumetric

strains occur in the wetting path scenario. This can be attributed to the lower softening

in the wetting path scenario.

In Figure 4.23b, the influence of the evolution parameter βper is clearly visible. As βper

increases, the permeability evolution also increases. However, it is evident that the width

of the zone with increased permeability is not affected by βper and remains consistent with

the results from the shearing path scenario.
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Figure 4.23.: Effect of βper on volumetric strain-dependent permeability evolution method

in the biaxial model subjected to a wetting path

4.3.9. Effect of βper on deviatoric strain-dependent permeability

evolution

In the previous section, the evolution parameter βper was examined in the context of

the volumetric strain-dependent permeability model. In the present section, a similar

investigation is conducted with regard to its influence on the deviatoric strain-dependent

method (see Equation 2.52). The input variables, yield index and deviatoric strain, as
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well as the resulting permeability changes across the model height, are illustrated in

Figure 4.24.

As shown in Figure 4.24a, an oscillation of the yield index can be observed. This originates

from the method used to calculate the yield index, defined as the normalized distance

from zero deviatoric strains to the yield surface in a p − q plane, which represents a

simplification for a three-dimensional yield surface such as that of the BBM. While the

BBM incorporates not only the p− q plane but also the s-axis, meaning the true distance

must be calculated in 3D space, a more complex derivation of the yield index is beyond

the scope of this thesis, particularly due to the limited benefit it would provide.

To ensure that permeability increases only within the shear band, it is essential to select

a threshold yield index Y Ithr that clearly distinguishes between the inside and outside

of the shear band. As seen in Figure 4.24a, all points are close to plasticity (Y I = 1),

making the choice of this threshold particularly important in the wetting path scenario.

A threshold yield index of Y Ithr = 0.99 is selected, as shown by the gray-shaded area

in Figure 4.24a. To assess the influence of βper, four models are computed with different

values of βper.

As with the volumetric strains, the deviatoric strains across the model height are identical

for all four models. This can be attributed to the globally prescribed pore water pressure,

which results in no changes in the effective stress path, in a manner analogous to that

observed with the volumetric strains. Additionally, the deviatoric strains are significantly

lower compared to the shearing path scenario, which is due to the reduced softening in

the wetting path scenario.

Regarding permeability changes, a clear influence of βper is observed: as βper increases,

the permeability change becomes larger. The expansion of the zone with increased per-

meability as βper increases can be explained by the fact that all nodes outside the shear

band are close to plasticity (Y I = 1), and depending on the time step, some of them are

occasionally included in the permeability calculation.

Given that the majority of elements are situated close to the plasticity threshold, an

investigation into the impact of the threshold yield index in the context of the wetting

path scenario is not a viable avenue for research.
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Figure 4.24.: Effects of βper on deviatoric strain-dependent permeability evolution method

in the biaxial model subjected to a wetting path
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4.4. Conclusion

In the previous sections, both the influence of element size and the effect of the elastic

modulus of the microstructure D on shear band localization were investigated. Two

stress path scenarios, namely shearing and wetting path, were analyzed. Although these

scenarios are quite different, they are both relevant to the upcoming tunnel excavation

simulation presented in the next chapter. It was demonstrated that the local second

gradient method enables mesh-independent shear band localization and that the elastic

modulus of the microstructure D, serving as an internal length scale, directly influences

the shear band width. After determining an appropriate mesh and an elastic modulus D

that ensures a minimum of three elements across the shear band width, various approaches

to increase the permeability within the shear band were explored. These approaches were

rigorously evaluated through a parameter study, where each individual input parameter

was changed at a time.

Notably, the deviatoric strain-dependent method yielded a more homogeneous perme-

ability evolution within the shear band compared to the volumetric strain-dependent ap-

proach. Both methods feature an evolution parameter βper, which allows control over the

degree of permeability increase. Additionally, the inclusion of a threshold yield index in

the deviatoric strain-dependent method offers more precise control over the zone affected

by the permeability increase, which is particularly crucial for confining this effect to the

shear band zone. As a result, the deviatoric strain-dependent method was chosen for the

subsequent tunnel excavation simulations to effectively manage permeability increases in

the Excavation Damaged Zone (EDZ). As demonstrated by the two different stress paths,

the selection of the evolution parameter βper and the threshold yield index Y Ithr must be

recalibrated for each individual stress path. Therefore, the values obtained here can only

serve as an initial reference point for the subsequent tunnel excavation simulations.



5. Numerical modelling of mechanized

tunnel excavation

5.1. Introduction

Following a detailed examination of strain localization through biaxial testing in the

previous chapter, with a special focus on the conditions and stress paths under which the

Barcelona Basic Model (BBM) exhibits localization and the various approaches linking

permeability increase to shear band localization, the focus now shifts to tunneling and

the simulation of the Excavation Damaged Zone (EDZ).

Tunnel excavation is a challenging three-dimensional problem that requires advanced con-

stitutive models for components such as soil, tunnel lining, and grouting materials. Sim-

ulating the excavation process and tunnel lining construction with accuracy incurs signif-

icant computational costs and requires advanced tools. Moreover, modeling the EDZ ne-

cessitates enhanced knowledge of material behavior and complex interactions, making the

modeling process not only computationally demanding but also inherently complex. To

balance accuracy and computational efficiency, this study adopts a 2D plane strain anal-

ysis that incorporates sophisticated constitutive models and the second gradient method

for mesh-independent strain localization.

To address the absence of the excavation direction, which is represented as the third

dimension missing in a 2D plane strain model, the convergence-confinement method is

applied. This method does not directly simulate the step-wise tunnel excavation but in-

stead controls the tunnel convergence as a function of the tunnel boring machine (TBM)

advancement, thereby mimicking the step-wise excavation process within the plane strain

framework. By approximating the effects of excavation progression in the missing dimen-

sion, this approach allows for a more realistic simulation of the excavation process while

maintaining computational effort affordable, avoiding the complexity and high compu-

tational cost of a full 3D model. As established in the previous chapter, certain model
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parameters, such as mesh size as well as strength and number of material imperfections,

require further examination to improve parameter estimates. Accordingly, in this chapter

a parameter study is performed to refine these settings. The chapter also adopts the

swelling phenomena studied in Chapter 3.1, analyzing various tunnel support strategies

with a focus on resulting tunnel support deformations and internal forces of the tunnel

lining. As a consequence, a modified convergence-confinement curve is developed using

data extracted from an axisymmetric numerical model of tunnel excavation, enhancing

the tunnel excavation simulation.

The chapter opens with a brief explanation of the case study (Section 5.2), which provides

the model geometry and initial stress conditions. For material properties, values derived

from the literature review in Section 3.2 are used, as they align well with the selected

case study due to being for the same material, at the same depth, and within the same

geological context, although from different locations. The next sections introduces the

2D plane strain numerical model of the tunnel excavation in detail, addressing boundary

conditions, discretization, and tunnel excavation techniques. Subsequently, a systematic

analysis of the EDZ is performed based on various results, followed by an investigation

of the temporal evolution of the EDZ. A parameter study then evaluates the influence of

various relevant parameters on the size and shape of the EDZ, with the goal of identify-

ing key parameters impacting model outcomes, particularly the dimensions of the EDZ

(Section 5.5).

The analysis proceeds to assess different tunnel support strategies, comparing unsup-

ported tunnel excavation with two types of supported tunnel strategies, namely rigid

support and deformable support, and examining their effects on the EDZ (Section 5.6).

Finally, a modified convergence-confinement method is introduced, deriving critical in-

formation such as the longitudinal displacement profile from an axisymmetric numerical

model (Section 5.7). After validating the internal force reduction method used in the

axisymmetric model, which is essential for simulating the progressive tunnel excavation, a

modified convergence-confinement curve is constructed and utilized in a new calculation

of the plane strain model for the tunnel excavation. The results of this simulation are then

analyzed in terms of the temporal evolution of the EDZ and compared with the linear

convergence-confinement method used in the parameter study. The chapter concludes

with a summary of findings in Section 5.8.
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5.2. Case study: The new Belchen tunnel project

For modeling mechanized tunnel excavation in swellable clay shales, the simulation should

be based on realistic boundary conditions, ideally on a real project. Consequently, the

New Belchen Tunnel was selected as a case study for the subsequent tunnel simulations,

and its key characteristics are briefly summarized in this section.

The New Belchen Tunnel, located between Basel and Lucerne in Switzerland, is a 3.2 km

long tunnel. Over the course of their lifespan, the older tunnels have experienced damage

caused by swelling anhydrite and Opalinus clay shale (Grob, 1972). As a result, a third

tube was excavated in 2016 west of the existing ones (Ziegler and Loew, 2017). In contrast

to the other two tubes, which were built in the 1960s using the NATM method, the new

Belchen tunnel was excavated using the mechanized tunneling method.

The New Belchen Tunnel was constructed using a single-shield tunnel boring machine

(TBM) with a cutter head diameter of almost 14m and a 10m long shield. Of the total

tunnel length of 3.2 km, approximately 570m are located in the Opalinus clay shale, as

shown in Figure 5.1.

To prevent swelling induced damage like observed in the older tunnel tubes, a very robust

tunnel support system was designed and built for the new tunnel. This includes a 35 cm

thick segmental lining, a sealing membrane, and a 65 cm thick cast-in-place concrete layer

(Ziegler et al., 2022). The overcut was approximately 22.5 cm and was filled with two-

component grout material.

Figure 5.1.: (a) Topographic map (source: swisstopo) and (b) Geological profile of the

New Belchen tunnel (Ziegler et al., 2022)
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The tunnel passes through the Opalinus clay shale layer with varying overburden depths

ranging from 200m to 330m. As Opalinus clay has gained considerable attention in recent

years as a potential host rock for a repository for radioactive waste, its properties have

been studied in great detail, as previously discussed in Section 3.2. The Opalinus clay shale

in the Belchen region exhibits geological characteristics comparable to the shaly facies

of Opalinus clay, which has been extensively examined at the Mont Terri Underground

Research Laboratory. At tunnel meter (TM) 2300 - 2330 (see Figure 5.1), which is under

an overburden of approximately 325m, in situ measurements were conducted by the Swiss

Federal Nuclear Safety Inspectorate (ENSI) (Martin and Lanyon, 2003; Ziegler and Loew,

2017; Renz et al., 2019; Ziegler et al., 2022). This cross-section was chosen as the reference

for the subsequent simulations.

5.3. 2D plane strain model

Although tunnel excavation is inherently a three-dimensional problem, this thesis employs

a 2D plane strain model to balance computational feasibility with the complexity of

simulating both the excavation process and the Excavation Damaged Zone (EDZ). This

section outlines the 2D plane strain model, beginning with a description of the geometry

and boundary conditions. It then details the numerical simulation of the tunnel excavation

process, followed by an exploration of the parameter study conducted to investigate the

influence of model parameters on the EDZ.

5.3.1. Geometry and boundary conditions

The 2D plane strain tunnel model is based on the New Belchen Tunnel in Switzerland, as

described in Section 5.2. The initial stresses at the Belchen tunnel depth are not explicitly

available in the literature. However, measurements reported by Martin and Lanyon (2003)

at the Mont Terri Underground Research Laboratory, located at a similar depth, indicate

principal stresses of approximately 7MPa. Assuming that vertical stresses are higher than

horizontal stresses, the model assumes an initial vertical stress of 14MPa and an initial

horizontal stress of 7MPa. While this assumption aligns with the data observed at Mont

Terri, the exact values for Belchen remain uncertain. Additionally, a pore water pressure

of 2MPa is incorporated into the model, based on observations from the Mont Terri rock

laboratory for Opalinus clay shale at a comparable depth (Amann et al., 2017).
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To optimize computational efficiency, only a quarter of the tunnel is simulated by taking

advantage of system symmetry. For the model discretization, the SGRT elements are used

again. The model boundary conditions on the symmetry axes are chosen such that no

water flow or deformation normal to the symmetry axis is possible. Additionally, due to

the presence of gradient terms in the equilibrium equations of the second gradient model,

a higher-order kinematic boundary condition must be imposed to maintain symmetry,

according to Zervos et al. (2001) and Pardoen et al. (2016). This condition complements

the classical boundary condition on normal displacements and ensures that the normal

derivative of the radial displacement, with respect to the tangential direction along the

symmetry axes is zero (Pardoen et al., 2016). To prevent the influence of boundary

effects on the tunnel excavation, the model is sufficiently large, with dimensions of 200m

by 200m. In the immediate vicinity of the tunnel, the mesh of the finite element model

is refined, as illustrated in Figure 5.2a, resulting in 9827 nodes and 7365 elements.

As in the previous chapter, the Barcelona Basic Model (BBM) in conjunction with the

local second gradient model is used for modeling. Additionally, based on the previous

chapter, the deviatoric strain-dependent permeability approach is employed for the sub-

sequent simulations.

For stress initialization, boundary stresses of 14MPa in the vertical (y) direction and

7MPa in the horizontal (x) direction are applied both at the model boundaries and

within the tunnel. Throughout all nodes of the finite element model, an initial pore water

pressure of 2MPa was applied, resulting in net stresses of σ′
y = 12MPa and σ′

x = 5MPa,

yielding an earth pressure coefficient at rest k0 = 0.416. Since the model boundaries

represent the intact clay shale, both the pore water pressure of 2MPa and the horizontal

and vertical stresses are held constant at the boundaries.

Although temperature significantly influences the stiffness and swelling pressure of clay

shales, it is assumed to remain constant at 20◦C in this model to limit its complexity,

which is already increased by the use of the second gradient formulation. This assump-

tion aligns with the conditions under which all laboratory tests and parameter calibrations

were conducted. At the Belchen site, the mean of the measured temperatures within the

clay shale is approximately 15◦C, based on in situ measurements (Ziegler et al., 2022).

However, fluctuations due to concrete hydration during construction and seasonal vari-

ations have been observed by Ziegler et al. (2022). These temperature changes are not

accounted for in the model to avoid adding further complexity, and the corresponding

degree of freedom is fixed.
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(a) Complete overview of mesh and boundary conditions

(b) Magnified area near tunnel excavation

without support

(c) Magnified area near tunnel excavation

with support

Figure 5.2.: Schematic illustration of the 2D plane strain model employed in simulating

the tunnel excavation of the Belchen tunnel
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To ensure robust localization, elements with material imperfections, highlighted in red

in Figures 5.2b and 5.2c, are incorporated into the model. The relevance of material

imperfections has been detailed in the previous chapter. In the subsequent simulations,

the material imperfection is introduced by reducing cohesion in certain elements, causing

them to reach the plastic state earlier. Since the number, position, and strength of these

material imperfections cannot be reliably determined in situ, they are highly uncertain

and will consequently be addressed in the subsequent parameter study.

In addition to an unsupported tunnel, two different support strategies, namely rigid and

deformable support, are investigated. Both strategies consist of a tunnel lining and a grout

layer. The lining is modeled as a 35 cm thick layer, while the grout layer fills the void

created by the 22.5 cm overcut between the outer diameter of the Tunnel Boring Machine

(TBM) cutter head and the outer diameter of the tunnel lining (Ziegler et al., 2022).

Consequently, the grout layer is assumed to have the same thickness of 22.5 cm as the

overcut. The grout and lining are discretized with 180 elements, as shown in Figure 5.2c.

A simplification applied in the model is that pore water pressure in all elements of the

tunnel support is fixed at atmospheric pressure to prevent any fluid flow within these

elements. Furthermore, the degrees of freedom related to the local second gradient model

are restricted, as strain localization is not expected in the tunnel support system. The

detailed modeling of the supported tunnel is presented in Section 5.3.4.

5.3.2. Simulation of the tunnel excavation process

To simulate the tunnel excavation, the convergence-confinement method described in

Section 2.3.2.1 is employed. At the beginning of the simulation, when the tunnel has

not yet been excavated, the radial pressure is applied to the tunnel wall, which is in

equilibrium with the initial stresses. Due to the hydro-mechanical nature of the problem,

the reduction of pore water pressure during excavation must also be considered.

Similar to the radial stress, the pore pressure acting on the tunnel wall is assumed to be

a function of the deconfinement ratio λw.

pΓw = (1− λw) pw,0 (5.1)

Where pΓw represents the pore water pressure at the tunnel wall during excavation, and

pw,0 indicates the initial pore water pressure on the tunnel wall, which corresponds to the

initial pore water pressure within the geological formation.
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Since no additional measurements during the excavation, such as surface settlement mea-

surements, are available, the reduction of radial stress to zero and that of pore water

pressure to atmospheric pressure are assumed to occur linearly over the estimated mean

excavation time of 4.5 h for each ring segment in the Belchen project, depicted in Fig-

ure 5.3.

Given the low permeability of the Opalinus clay used in this research, the Excavation

Damaged Zone (EDZ) is investigated over a long period of 1000 days to assess the effects of

swelling and other hydro-mechanical coupled interactions which might influence the EDZ.

Therefore, the radial stress and pore water pressure, reduced during tunnel excavation,

remain constant until 1000 days are reached. The details for the supported tunnel are

explained in the subsequent section.
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Figure 5.3.: Applied total stresses and pore water pressure at the tunnel wall

5.3.3. Constitutive parameters of tunnel support materials

Following the previous section’s description of the modeling approach for tunnel excava-

tion, the focus now shifts to the modeling of tunnel supports. Two scenarios, rigid and

deformable support, are examined for the tunnel with support. Both, are based on the

tunnel support system described for the Belchen Tunnel in Section 5.2, consisting of a

tunnel lining and an annular gap grout. The difference between the two support systems

lies in their approach to handling swelling pressures.

In the rigid support scenario, the tunnel support is designed to resist swelling pressures

with little or no deformation. In contrast, the deformable support scenario allows the

tunnel support to deform under the swelling pressure, which helps to reduce the magnitude

of the pressure, similar to the behavior observed in the deformation-controlled swelling

tests conducted on remolded Opalinus clay described in Section 3.4.2.
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Both scenarios use the same tunnel lining, but differ in the grout composition of the

annular gap. The grout in the deformable support is designed to allow for deformation,

while the grout in the rigid support is meant to remain stiff and resist deformation.

5.3.3.1. Tunnel lining parameters

As described in Section 5.2, the tunnel support system consists of a segmental lining and

a cast-in-place steel reinforced concrete layer, with a combined thickness of 100 cm as

illustrated in Figure 5.4a. To reduce the complexity of the numerical model, both layers

are treated as a single layer with a thickness of 35 cm and an increased equivalent stiffness,

depicted in Figure 5.4b. Since no failure or plastic deformations of the tunnel lining are

assumed, the tunnel lining is simplified and calculated using a linear elastic constitutive

model. For this, a Young’s modulus E and a Poisson’s ratio ν are required.

To ensure realistic modeling of lining deformations, an equivalent stiffness, ensuring the

same axial stiffness (EA), is determined using Equation 5.2. In this equation, the indices

35 and 100 denote the thicknesses of the simplified single-layer approach and the in situ

dual-layer linings, respectively. The equivalent stiffness Eeq,35 is calculated based on the

ratio of the areas A100 and A35.

Eeq,35 =
A100

A35

E100 (5.2)

Although this model does not account for the stepwise construction of the tunnel support,

first installing the segmental lining, followed by the cast-in-place concrete layer, this

approach allows for future studies to incorporate such phasing by adjusting the stiffness

during the simulation, starting with E35 during the segmental lining installation and

changing to E100 when the cast-in-place concrete layer is installed, which is not in the

scope of this research.

The specific concrete class used in the New Belchen Tunnel is not known to the author.

However, a concrete class of C55/67, which corresponds to a Young’s modulus of 38.2GPa

according to DIN EN 1992-1-1:2011, is assumed within this study. This leads to a calcu-

lated equivalent Young’s modulus of around 100GPa. The Poisson’s ratio for the concrete

lining, determined to be ν = 0.2, is based on values cited in Ziegler et al. (2022).
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PVC Sealing Membrane (2.5 mm)

Cast-in-place Lining (65 cm)

Segmental Lining (35 cm)

(a) In-situ: dual-layer lining (35 cm outer,

65 cm inner layer)

Segmental Lining (35 cm)

(b) Numerical model: simplified single-

layer lining (35 cm)

Figure 5.4.: Comparison of schematic representations of tunnel lining: in-situ dual-layer

(Ziegler et al., 2022) versus numerical model’s simplified single-layer

5.3.3.2. Rigid grout parameters

In mechanized tunneling, the annular gap is filled with grout material. During the in-

jection of this grout, it is in a liquid state and hardens over time. The time-dependent

stiffness development of the grouting material has been studied in the literature by Shah

et al. (2018); Lavasan and Schanz (2017); Marwan (2019).

For this research, the approach proposed by Marwan (2019) is utilized in a modified form.

As seen in Figure 5.5, in the first six hours after injection, the stiffness of the grouting

material increases from 10% to 75% of its final stiffness, which is achieved after a few

days.

Instead of modeling the stiffness as a continuous time-dependent function, two distinct

time periods are defined: one in which the grouting material remains liquid or soft, referred

to as the soft phase, and another where the material has fully hardened, referred to as

the hard phase (see Section 5.3.4).
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Figure 5.5.: Development of grouting stiffness with time after Marwan (2019)

For the modeling of the rigid grout, a linear elastic constitutive model is again employed,

as no significant plastic deformations are expected. In the context of the New Belchen

project, Uniaxial Compressional Strength (UCS) tests were conducted on hardened grout

samples taken from the New Belchen Tunnel by Antonioli (2018), and the results are

utilized for the constitutive parameters of the hard phase (Ehard = 1.5GPa and ν = 0.3),

as detailed in Table 5.1. For the liquid phase, a stiffness ratio near the beginning of the

curve depicted in Figure 5.5 is chosen. Accordingly, a value of Esoft = 0.17 × Ehard =

0.25GPa is selected to ensure a smooth numerical value.

5.3.3.3. Deformable grout parameters

In the scenario dealing with the deformable tunnel support, the grout material is al-

lowed to deform under the influence of pressure, thereby reducing the pressure transfer to

the tunnel support system. The behavior of these deformable grout materials, achieved

by adding expanded glass or EPS, was investigated by Plückelmann and Breitenbücher

(2020) through compression tests performed under oedometric boundary conditions. The

resulting stress-strain curve is schematically illustrated in Figure 5.6.

As seen in Figure 5.6, initially, a linear elastic response (Stage I) is observed when increas-

ing the axial strain (εI−II). Once a yield stress σpl is reached, a plastic behavior (Stage II)

becomes evident, characterized by large plastic deformations (εII−III) at constant stress.
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Figure 5.6.: Stress-strain behavior of deformable grout under oedometric boundary con-

ditions after Plückelmann and Breitenbücher (2020)

In this stage, the voids created by foam and the addition of highly porous additives

collapse. As the axial strains continue to increase, the material undergoes further densi-

fication, leading to a sharp increase in stress.

In the research conducted by Plückelmann and Breitenbücher (2020), various compositions

of deformable grouting materials were investigated. For the deformable tunnel support

examined in this research, the M4 material from Plückelmann and Breitenbücher (2020)

is selected as the stresses developed in this material during axial loading are closest to the

expected swelling stresses of Opalinus clay shale. Within the extensive testing program

detailed by Plückelmann and Breitenbücher (2020), cylindrical samples were subjected to

loading under oedometric boundary conditions. These tests are simulated to calibrate the

corresponding model parameters, and the modeling approach is illustrated in Figure 5.7.

For the stress-strain behavior described in Figure 5.6, the previously used linear elastic

constitutive model is inadequate, as it does not allow for plastic deformations. Therefore,

the Modified Cam-Clay (MCC) model described in Section 2.2.3.2 is employed to model

the hard phase of the deformable grout. It should be noted that the finite element

framework Lagamine does not include a material model specifically tailored for deformable

grout material. Although the MCC model was not originally developed for modeling grout

material, it is capable of adequately reproducing the behavior observed in Figure 5.6.
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Figure 5.7.: Comparison of the uncompressed and compressed states of the M4 specimen

from experiments (Plückelmann and Breitenbücher, 2020) and numerical simulations, with

annotations by the author

The results of the parameter calibration concerning the stress-strain curve are presented in

Figure 5.8, and the determined constitutive model parameters can be found in Table 5.1.

As shown in Figure 5.8, the experimental stress-strain behavior is well simulated using

the Modified Cam-Clay model. The only aspect that could not be accurately represented

is the stress response beyond ε = 0.6, which is, however, significantly outside the expected

swelling strain range of Opalinus clay shale, estimated to be between ε = 0.1 and ε = 0.12

(see Section 3.4.1). Therefore, the underestimation of the measured stresses in that strain

range can be accepted.

Similar to the rigid grout, a soft phase is also considered for the deformable grout. Since

Marwan’s investigation focused on non-highly deformable grouting materials, a ratio be-

tween final stiffness and soft phase stiffness of 0.4 is chosen instead of 0.17, as used for

the rigid grout. This adjustment is made to avoid yielding excessively low stiffness values,

which could lead to convergence issues in the finite element simulation.

All determined constitutive model parameters for the entire tunnel support are summa-

rized in Table 5.1.
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Figure 5.8.: Numerical and experimental (Plückelmann and Breitenbücher, 2020) stress-

strain curves for deformable grout material M4

Table 5.1.: Mechanical parameters of tunnel support materials used in the numerical

models of the supported tunnel

Rigid grout

Parameter Symbol Value Unit

Soft state Young’s elastic modulus E 0.25 GPa

Poisson’s ratio ν 0.3 -

Hard state Young’s elastic modulus E 1.50 GPa

Poisson’s ratio ν 0.3 -

Deformable grout

Soft state Young’s elastic modulus E 0.08 GPa

Poisson’s ratio ν 0.2 -

Hard state Young’s elastic modulus E 0.20 GPa

Poisson’s ratio ν 0.2 -

Volumetric strain hardening parameter H 0.9 -

Preconsolidation pressure p0 0.15 MPa

Friction angle for compressive paths φC 25 °
Friction angle for extensive paths φE 25 °

Cohesion c 1 MPa

Tunnel lining

Equivalent Young’s elastic modulus Eeq,35 100 GPa

Poisson’s ratio ν 0.2 -
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5.3.4. Staged construction process of supported tunnel

As previously mentioned, not only an unsupported tunnel but also a tunnel with support

will be investigated. As described in Section 5.3.1, the tunnel support consists of a tunnel

lining and a layer of grouting material. Due to the tunnel excavation, the surrounding

soil deforms. Once the soil is fully excavated, the tunnel lining is constructed with a

predefined diameter within the tunnel boring machine, and the gap between the lining

and the formation is filled with injected grouting material at the end of the shield tail.

Unfortunately, the exact width of the gap where the grout material is injected is not known

prior to the simulation, as it depends on the ground deformation during excavation. To

address this, the tunnel lining is activated from the beginning of the excavation, and a

dummy layer with very low stiffness (elastic modulus of 0.05MPa and Poisson’s ratio

of 0.01) is introduced between the tunnel lining and the Opalinus clay shale. The sole

purpose of the dummy layer is to deform in conjunction with the ground.

As the grout material is liquid during injection and hardens over time, a soft grout layer

is assumed between 4.5 h and 3 days. Therefore the dummy layer is deactivated and a

soft grout layer is activated after 4.5 h. In order to consider the pressure at which the

grout material is injected into the gap, an initial stress of pinject = 200 kPa is applied in

the grout elements. After 3 days, it is assumed that the grout material has hardened.

Consequently, the previous soft grout layer is deactivated, and the stiff grout layer is

activated until the end of the modeling period (1000 days). It should be noted that the

dummy layer, the soft grout layer, and the stiff grout layer all share the same nodes, but

only one layer is active at a given time.
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5.4. Temporal evolution of the EDZ for unsupported

tunnel excavation

Prior to examining the results of the parameter study, it is essential to establish a sys-

tematic approach for evaluating the size of the EDZ and to identify the appropriate time

steps for evaluating the parameter study. Potential metrics for quantifying the EDZ area

include deviatoric strain, plastic points, and bifurcation criteria. To illustrate these met-

rics, a reference model utilizing the bold values from Table 5.2 has been analyzed across

eight selected time steps: two during excavation at t = 3.3 h and t = 4h, one at the end

of excavation (t = 4.5 h), and five after excavation is completed (t = 1 day, t = 10 days,

t = 100 days, t = 500 days, and t = 1000 days).

5.4.1. Temporal evolution of deviatoric strains

Considering that the approach utilized in this research involves examining the EDZ

through shear strain localization, it might be logical to use deviatoric strains for a quan-

titative assessment of the EDZ size. Therefore, the temporal evolution of the field of

deviatoric strains is initially presented in Figure 5.9.

As observed, the shear bands emerge and grow significantly until the end of the excavation.

However, after excavation, the increase in size is not clearly discernible.

The main issue lies in the fact that the visual representation of the EDZ can vary depend-

ing on the choice of upper and lower limits in the contour plots, leading to inconsistencies

in the perceived size of the EDZ. To utilize deviatoric strains as a measure for a quantita-

tive evaluation of the EDZ, it would be necessary to establish thresholds to distinguish the

EDZ from the surrounding intact zones. However, since this also depends on the stress

path, as illustrated by comparisons between shearing and wetting paths in the biaxial test

in Section 4.3.2, it is unlikely that a common threshold value can be determined for both

stress paths.

Furthermore, shear strains around a tunnel excavation cannot be determined, and there-

fore, other quantities are subsequently investigated, which either do not require a threshold

value or are quantities that can be better estimated on site.
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Figure 5.9.: Development of total deviatoric strain within the reference numerical model

of unsupported tunnel during and after tunnel excavation (end of excavation: 16.2× 103 s

= 4.5 h)
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5.4.2. Temporal evolution of plastic points around the tunnel

The EDZ is characterized by the presence of fractures and damage in the surrounding rock

mass. While fractures cannot be directly modeled in finite element simulations, plastic

deformations can serve as indicators of potential fracturing. To explore this approach,

integration points exhibiting plasticity, referred to hereafter as plastic points, are analyzed

to assess the size of the EDZ. The zone containing these plastic points is referred to as

the plastic zone in the following.

The temporal evolution of these plastic points is presented in Figure 5.10, following an

approach similar to the analysis conducted for deviatoric strains. At t = 3.3 h, a plastic

zone begins to form around the excavation area. As the excavation progresses, this zone

gradually expands, reaching its maximum extent by t = 4.5 h, when the excavation is

completed. Within the first day, parts of the initial plastic zone undergo unloading and

transition into an elastic state, as depicted in Figure 5.10d. Over time, this area reverts

to plasticity and expands further until reaching 1000 days.

By comparing the evolution of deviatoric strain in Figure 5.9 with the development of

plastic points in Figure 5.10, it becomes evident that the plastic zone extends beyond the

region of shear strain localization, with the two zones only partially overlapping.

As shown in Figure 5.11 (middle), some plastic points coincide with the locations of

the previously identified shear bands, indicating that the localized plastic deformation is

associated with the development of these bands. However, a larger area of plastic points

is observed to the right of the shear bands, which is not directly related to shear band

formation. This additional plasticity is attributed to the elevated pore water pressure in

this region, as depicted in Figure 5.11 (right). Consequently, the plastic points can be

categorized into two types: shear-induced and pore water pressure-induced.

To explain the development of the plastic zone in detail, it is essential to examine both the

temporal evolution of pore water pressure and the tunnel deformation mechanism over

time. This will provide a clearer understanding of the interplay between shear-induced

plasticity and the effects of pore water pressure on the overall deformation.

First, the temporal evolution of pore water pressure is examined. For this purpose, the

pore water pressure distribution around the tunnel at various times during and after the

tunnel excavation is shown in Figure 5.12. Due to the low permeability of Opalinus clay

shale and the unloading due to the tunnel excavation, a negative pore water pressure or

suction s = 1.18MPa develops in the crown of the tunnel, while an increase of pore water

pressure occurs at the sides of the tunnel, with a peak value of pw,peak = 6.22MPa.
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(c) 16.2× 103 s (4.5 h)
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(d) 8.64× 104 s (1 day)
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(g) 4.32× 107 s (500 days)
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(h) 8.64× 107 s (1000 days)

Figure 5.10.: Development of plastic points within the reference numerical model of un-

supported tunnel during and after tunnel excavation (end of excavation: 16.2 × 103 s =

4.5 h)
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Figure 5.11.: Comparison of plastic points (left) with the deviatoric strain (middle) and

pore water pressure (right) after excavation (t = 4.5 h)

This can be explained by the ovalization of the tunnel resulting from the anisotropic stress

state, depicted in Figure 5.13a, which is explained in detail in the following.

Over time, the maximum value of the pore water pressure shifts along the horizontal axis,

as depicted in Figures 5.12a to 5.12c. After the excavation is completed, the excess pore

water pressure gradually dissipates over time, due to the hydraulic boundary conditions

at the tunnel wall (local drainage) and is no longer visible after 100 days, as illustrated

in Figure 5.12f.

Next, the temporal evolution of the tunnel wall deformations, illustrated in Figure 5.13,

where the radial deformations are plotted in radial coordinates, are analyzed. Due to the

anisotropic stress state, ovalization of the tunnel occurs during excavation, with the tunnel

crown deforming more than the tunnel sides. After excavation is completed (t = 4.5 h),

the tunnel wall deforms by about 4.5 cm to 5 cm at the sides, while the tunnel crown

deforms by over 6.6 cm.

It should be noted that a negative sign here indicates a deformation towards the tunnel

center. After the tunnel excavation is completed, additional deformation is observed at

the tunnel crown and minor at the tunnel side. This can be explained by the sketch

in Figure 5.13b, which illustrates the volume increase due to mechanical swelling and

resulting tunnel wall deformations. After the excavation is completed, a negative pore

pressure (blue area) develops at the tunnel crown due to the low permeability of the

Opalinus clay shale. Over time, this negative pore pressure, or suction, decreases, leading

to a volume increase (swelling). This leads to additional deformations at the tunnel crown

and more ovalization of the tunnel.

It should be clearly stated at this point that the swelling discussed here refers to the pure

mechanical swelling already explained in Section 2.2.1.1. This phenomenon arises due to
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the initial saturation of the geological formation, which subsequently creates a suction as

a consequence of the unloading induced by the tunnel excavation and the low permeability

of the Opalinus clay shale.
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Figure 5.12.: Development of pore water pressure distribution within the reference numer-

ical model of unsupported tunnel during and after tunnel excavation (end of excavation:

16.2× 103 s = 4.5 h)
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Figure 5.13.: Effects and resulting tunnel wall displacements for the reference numerical

model of unsupported tunnel

In the radial displacements shown in Figure 5.13a, four distinct jumps are observed at the

locations of the imperfect elements or shear bands. This can be attributed to the initiation

of shear bands at these material imperfections. Within a shear band, deformations are

concentrated in an extremely thin zone, leading to steep strain gradients. Depending

on the underlying constitutive model, this concentration of deformation may result in a

stress concentration, as depicted in Figure 5.14, which shows the stress distribution in a

Cartesian coordinate system.

The radial stresses vary along the tunnel wall, consisting of different contributions from

the Cartesian stress components (σxx, σyy, σxy) varying depending on the position along

the tunnel wall. Notably, at the tunnel side, where the radial stresses are primarily

resulting from the stresses in the horizontal direction (σxx), there is a region between the

two shear bands where the stresses are lower than within the shear bands. This is clearly

visible as the red triangular area in Figure 5.14a. These stress and strain concentrations

give rise to the distinct jumps observed in Figure 5.13a. Another potential cause of the

stress concentration is the increased permeability within the shear bands, leading to a

faster dissipation of pore water pressure, which results in an increase in net stress p and

further contributes to the observed stress concentration.
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(a) σxx
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(b) σyy
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(c) σxy

Figure 5.14.: Stress distribution in the surrounding ground at the end of simulation (t =

1000 days)

Although the temporal evolution of the pore water pressure as well as the temporal evolu-

tion of the tunnel wall deformation provide valuable insights, needed for the understanding

of the plastic point evolution (see Figure 5.10), the reasons for the elastic unloading shown

in Figure 5.10d are still not fully understood. Therefore, a detailed examination of the

stress paths of selected elements along the x-axis, highlighted in red in Figure 5.15, is

carried out and the resulting stress paths are illustrated in Figures 5.16 to 5.18.

Figure 5.15.: Position of elements for which the stress path is investigated
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First, the stress path of the element closest to the tunnel wall, located 0.75m (≈ 0.1r)

from the tunnel wall, is analyzed, as shown in Figure 5.16. The yield surfaces depicted

in Figure 5.16 correspond to the initial yield surface (YS initial) at t=0 h, the final yield

surface (YS final) at t=1000 days, and an intermediate yield surface (YS inter), which

in this case corresponds to t=4.5 h. As illustrated in Figure 5.16, the element remains

in plasticity at all selected time steps. The deviatoric stress increases from the initial

anisotropic stress state (black mark) as a result of the tunnel excavation. Additionally, a

leftward shift in the stress path is observed as excavation progresses, driven by pore water

pressure buildup that reduces the net stress.

After t = 1.7 h, the stress path touches the yield surface on the dry side of the yield

surface (blue mark). Since excavation is not yet complete, any additional unloading

induces softening, visible in the magnified view in Figure 5.16.

After t = 2.5 h, net stress begins to increase with minimal softening, signifying a decrease

in pore water pressure. When tunnel excavation is complete (red mark), the stress path

has shifted to the wet side of the yield surface. Over time, pore water pressure continues

to decrease, leading to an increase in net stress and resulting in hardening.
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Figure 5.16.: Stress path for an element in 0.75m (≈ 0.1r) distance to tunnel wall
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A similar trend is observed in the stress path of an element located 2.25m (≈ 0.3r) from

the tunnel wall, depicted in Figure 5.17. A notable difference, however, is that the yield

surface is reached later compared to the element closer to the tunnel wall. This delay

can be attributed to the progressive pore water pressure buildup, which reduces the net

stress, starting near the tunnel wall and moving along the x-axis over time, as illustrated

in Figure 5.12.

Consequently, the stress path reaches the yield surface at t = 2h on the dry side (blue

mark), but closer to the critical state line (CSL). Between t = 2h and t = 3.33 h, the ele-

ment undergoes softening due to increased deviatoric stress induced by tunnel excavation.

When excavation is completed after 4.5 h, the stress path is on the wet side (red mark).

Following excavation, an elastic unloading phase occurs up to t = 1 day (orange mark),

while the element stays in elasticity until t = 5 days. This unloading can be explained

by changes in pore water pressure at two different locations. First, the dissipation of

excess pore water pressure on the tunnel side leads to increased net stresses. Second, the

decrease of excavation-induced suction at the tunnel crown causes local volume expan-

sion or swelling. This local swelling leads to increasing tunnel ovalization, as illustrated

Figure 5.13b.

Between t = 4.5 h and t = 5 days, the radial displacements at the tunnel side slightly

decrease, consequently reducing the deviatoric stresses, leading to the observed elastic

unloading. Due to the limited extent of the suction-induced area, the increase in ovaliza-

tion and the resulting reduction in deviatoric stress is also limited. Since the element is

located further from the tunnel wall and not within a zone with increased permeability

(due to minimal deviatoric strains), pore water pressure dissipation continues, indicated

by a further increase in net stress without further decrease in deviatoric stress.

After five days, the net stress increase is sufficient for the stress path to touch the yield

surface on the wet side, leading to limited hardening through to the end of the simulation.

This sequence explains why some elements in Figure 5.10 experience elastic unloading

initially and subsequently return to plasticity over time.
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Figure 5.17.: Stress path for an element in 2.25m (≈ 0.3r) distance to tunnel wall

Additionally, an element located 6.11m (≈ 0.9r) horizontally from the tunnel wall is ex-

amined. This element exhibits a distinct stress path compared to the previously inspected

elements as illustrated in Figure 5.18. Due to its relatively greater distance from the tun-

nel wall, it is less affected by tunnel excavation, causing its stress path to reach the yield

surface on the wet side instead of the dry side as seen for the other two elements which

are closer to the tunnel wall.
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Figure 5.18.: Stress path for an element in 6.11m (≈ 0.9r) distance to tunnel wall
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As shown in Figure 5.18, after excavation (red mark), the stress path has just entered

plasticity. Over time, hardening is observed, which, as with the other two elements, can be

attributed to the gradual reduction of pore water pressure. Since the stress path shows no

softening, it is logical that no localized shear failure occurs at this relatively large distance

to the tunnel wall (≈ 0.9r).

Although the temporal evolution of plastic points has been previously discussed, their

suitability for systematically determining the EDZ size has not been evaluated. This

aspect will be examined in greater detail in the following section.

5.4.3. Computation and temporal evolution of the plastic zone in

terms of size and permeability

In the literature, for example in Bossart et al. (2002), the EDZ is described as a zone

where plastic deformations occur due to excavation processes. These plastic deformations

can manifest as fractures, depending on the ground conditions. These fractures increase

the permeability of the EDZ to several orders of magnitude greater than the permeability

of intact ground.

It has already been demonstrated in the previous section that plasticity does not neces-

sarily imply the presence of shear bands, as observed in the EDZ, since it can also be

induced by other phenomena such as pore water pressure built-up. Nevertheless, it is

worth investigating whether the zone in which the plastic points are located, hereafter

referred to as the plastic zone, captures the unique features of the EDZ, such as the sig-

nificant increase in permeability. To investigate this, in addition to the area of the plastic

zone, the permeability of the plastic zone must also be examined.

To enable a systematic evaluation of the plastic zone at various times during and after the

excavation, a python script is developed. The script loops radially through the elements,

moving from the outer to the inner areas. Once an element in plasticity is identified, the

corresponding element is stored and selected as the boundary of the plastic zone. The

area of the plastic zone is then calculated by summing the areas of all elements within

the detected boundary of the plastic zone.

To quantify the permeability of the plastic zone, the mean permeability k̄w,plastic is deter-

mined by summing the permeability ki of each individual element within the plastic zone,

multiplied by its corresponding element size Ai, and subsequently dividing by the total

plastic zone area
∑n

i=1Ai.
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k̄w,plastic =

n∑
i=1

kiAi

n∑
i=1

Ai

(5.3)

Using the developed python script, the temporal evolution of the plastic zone, as well as

the permeability within this zone, is calculated and illustrated in Figures 5.19 to 5.21.

The permeability is expressed both as the mean permeability k̄w,plastic and as the mean

permeability ratio between k̄w,plastic and the initial permeability kw,0, denoted as ∆k̄w,plastic.

The latter expression facilitates a clearer understanding of how many orders of magnitude

the permeability is increased in this zone compared to the initial permeability of the intact

ground.

As shown in Figure 5.19, the plastic zone increases during excavation, reaching its peak

at the end of excavation with an area Aplastic ≈ 50m2. After excavation is completed

(t = 4.5 h), the plastic zone decreases to Aplastic ≈ 18m2. The reasons for this decrease

have already been explained based on the corresponding stress paths (see Figure 5.16).

After t = 5 days, the plastic zone begins to increase again due to the reduction in excess

pore water pressure, leading to an increase in net stress, as already explained during

the analysis of the stress paths. By the end of the simulation, a steady plastic zone of

Aplastic ≈ 48m2 is reached.

Although the plastic zone shows an increase during excavation, which initially aligns with

the formation of the EDZ, the drastic reduction of the EDZ shortly after the end of exca-

vation, followed by a re-expansion of the EDZ as suggested by the observed development

of the plastic zone, cannot be physically justified.

The temporal evolution of the mean permeability within the plastic zone follows a different

trend compared to the plastic zone area. From the start to the end of excavation, the

mean permeability increases up to 2E-17 m2, but after excavation is completed (t = 4.5 h),

it continues to increase up to 4.38E-17 m2, even though the total size of the plastic zone

decreases.
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Figure 5.19.: Temporal evolution of the plastic zone for the reference numerical model of

unsupported tunnel
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Figure 5.20.: Temporal evolution of the mean permeability within the plastic zone for the

reference numerical model of unsupported tunnel

This phenomenon can be attributed to the observation that the primary increase in per-

meability occurs in the region where shear bands develop, as this increase is associated

with the equivalent strains. Since this region remains in plasticity after excavation and

the plastic zone created by the pore water pressure increase does not experience significant

permeability changes, the mean permeability continues to rise.

When the plastic zone begins to expand again at t = 5 days, the mean permeability

decreases, as zones with unaltered or only slightly increased permeability are now included
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Figure 5.21.: Temporal evolution of the permeability ratio within the plastic zone for the

reference numerical model of unsupported tunnel

in the calculation. A similar trend and conclusion can be drawn from Figure 5.21, where

the mean permeability ratio is shown.

Although the evolution of permeability in the plastic zone shows an increase up to a

maximum value followed by a decrease, which is also expected for the EDZ, it is clear

that these changes are primarily due to the changing size of the plastic zone.

The resulting development of both the area and permeability of the plastic zone highlights

the fact, already established in the previous section, that plasticity in the current model

encompasses not only the region with shear bands and increased permeability but also

an additional zone that experiences plasticity due to pore water pressure changes, which,

however, does not lead to a significant change in permeability as expected in the EDZ.

Although the plastic zone is an important result, it does not fully capture the unique fea-

tures of the EDZ, such as the significant increased permeability. Therefore, an alternative

systematic method needs to be developed to better characterize the EDZ, limiting its size

to the zones where shear bands appear, similar to previous studies focusing on deviatoric

strains or the bifurcation criterion, which will be the subject of the next section.
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5.4.4. Temporal evolution of the bifurcation criterion around the

tunnel

The bifurcation, or Rice criterion, is a theoretical concept that indicates, based on the

stress and strain states and the tangent tensors of the material model, whether an ele-

ment satisfies the conditions for shear strain localization, as discussed in Section 2.7.2.

Furthermore, it provides insight into the two possible directions of the shear band. Unlike

the deviatoric strains, it does not necessitate the introduction of a threshold value, which

makes it a useful indicator for the appearance of the EDZ. In this section, the tempo-

ral evolution of the bifurcation criterion is examined, and its potential for systematically

characterizing the EDZ in terms of size and permeability is evaluated.

In Figure 5.22, the temporal evolution of the bifurcation directions is illustrated, indicated

by green and red arrows. It should be noted that, from a theoretical perspective, both

the green and red arrows indicate conjugated directions of the shear bands.

A comparison of the elements where the criterion is satisfied, along with the resulting

bifurcation directions, reveals alignment with the shear bands shown in Figure 5.9. How-

ever, it is also evident that the Rice criterion is not fulfilled along the entire length of the

shear bands. Consequently, using only this criterion to determine the size of the EDZ

would lead, in this case, to an underestimation or, as will be shown in Section 5.5.2, an

overestimation of the EDZ area. This finding indicates that the bifurcation criterion may

not be adequate for a systematic evaluation of the EDZ. Nevertheless, it is crucial to

acknowledge that the bifurcation criterion continues to serve as a valuable instrument for

investigating shear strain localization in depth.

A rigorous examination of the most promising metrics (deviatoric strain, plastic points,

and the bifurcation criterion) has been undertaken so far. However, it must be noted

that each of these metrics has its limitations or is not suitable for the systematic evalu-

ation of the EDZ. Therefore, in the following section, another important parameter that

characterizes the EDZ, the permeability, is under investigation.
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Figure 5.22.: Development of bifurcation directions within the reference numerical model

of unsupported tunnel during and after tunnel excavation (end of excavation: 16.2× 103 s

= 4.5 h)
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5.4.5. Temporal evolution of permeability around the tunnel

As described in Section 2.4, the EDZ is characterized not only by a reduction in stiffness

due to damage but also by a significant increase in permeability compared to the intact

clay shale. Therefore, in addition to the previously examined metrics, the evolution

of permeability, expressed as the ratio between the current and the inital permeability

∆kw = kw
kw,0

is also investigated for the systematic assessment of the EDZ. To this end, the

temporal evolution of permeability ratio is presented in Figure 5.23, following the same

approach as in case of the previously discussed metrics.

Similar to the deviatoric strains, the increase in permeability develops up to t = 3.3 h

and progressively rises until t = 4.5 h (the end of the excavation). The permeability along

the shear band increases to a value being approximately 100 times greater than that of

the intact formation. After the end of the tunnel excavation, until t = 1000 days, no

significant changes in the permeability ratio are observed in Figure 5.23.

Although the distinction between intact clay shale and shear bands appears clearer in

case of the permeability ratio compared to deviatoric strains, since the difference between

intact clay shale (∆kw = 1) and shear bands (∆kw ≫ 1) is more pronounced, a threshold

is still required for a systematic evaluation of the EDZ area.

As shown in the previous sections, the plastic points and the bifurcation criterion are not

suitable for the systematic evaluation of the EDZ. It was demonstrated that shear bands

are the main contributors to the size of the EDZ, particularly the increase in permeability.

Since permeability depends on deviatoric strains, both are capable of characterizing the

EDZ.

However, both require a threshold value to distinguish between the inside and outside of

the EDZ. Unlike deviatoric strains, permeability is measurable in situ, and there are doc-

umented observations in the literature regarding this parameter. Ultimately, the perme-

ability ratio is selected for calculating the size of the EDZ. The following section presents

the approach for calculating the EDZ size and determining a reasonable threshold value

for the permeability ratio.
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Figure 5.23.: Development of permeability ratio within the reference numerical model of

unsupported tunnel during and after tunnel excavation (end of excavation: 16.2× 103 s =

4.5 h)
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5.4.6. Calculation of EDZ area based on permeability ratio and

determination of the threshold value

Unlike the plastic points, where only two states are present, either plastic or elastic, the

permeability ratio is a scalar quantity. Therefore, when using the permeability ratio to

calculate the EDZ area, a threshold value is needed, as otherwise no distinction can be

made between the inside and outside of the EDZ.

To address this, and similar to the plastic zone calculation, a python script is created

that loops radially through the elements in the refined zone around the tunnel, moving

from the outer to the inner areas. Once the criteria for identifying the EDZ, in this case

∆kw > ∆kw,thr, is met, the corresponding element is stored and selected as the boundary

of the EDZ. The area of the EDZ and the mean permeability within the EDZ is then

calculated using the same approach as for the plastic zone (see Equation 5.3).

To establish a reasonable threshold value ∆kw,thr, the EDZ area AEDZ and mean per-

meability k̄w,EDZ, along with the resulting mean permeability ratio ∆k̄w,EDZ within the

EDZ, are calculated across a range from ∆kw,thr = 1 to 100 at the end of the simula-

tion (1000 days). The resulting area and permeability are illustrated as functions of the

threshold value in Figures 5.24 to 5.26.

As illustrated in Figures 5.24, as the threshold increases, the size of the EDZ decreases,

while permeability increases as seen in Figures 5.25 and 5.26.
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Figure 5.24.: Variation in the Excavation Damaged Zone (EDZ) area as a function of the

permeability threshold after 1000 days
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Figure 5.25.: Mean permeability of the Excavation Damaged Zone (EDZ) as a function of

the permeability threshold after 1000 days
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Figure 5.26.: Permeability ratio in the Excavation Damaged Zone (EDZ) as a function of

the permeability threshold after 1000 days

The reduction of the EDZ area is non-linear and can be divided into four distinct phases.

The most significant EDZ area reduction occurs between thresholds ∆kw,thr = 1 to 10.

While the decrease continuous, it is less pronounced between ∆kw,thr = 10 and 20. From

∆kw,thr = 20 to 40, the decrease is again more substantial, indicating a plateau between

∆kw,thr = 10 to 20. Beyond a threshold value of 40, no further significant reduction

in the EDZ area is observed. Similar observations can be made for permeability, with

the key difference being that, unlike the EDZ area, permeability increases as depicted in

Figures 5.25 and 5.26.
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Figure 5.27.: Superposition of different outer boundaries of the Excavation Damaged Zone

(EDZ) as a function of the selected thresholds for permeability ratio after 1000 days

To visually interpret this, six threshold values (2, 5, 10, 20, 40, and 100) are selected,

and the corresponding EDZ outer boundaries are plotted on top of the permeability ratio

in Figure 5.27. The permeability ratio threshold ∆kw,thr = 2 overestimates the EDZ,

as it includes zones where the permeability is only slightly increased, most likely due to

deviatoric strains occurring prior to the localization, as also found in biaxial testing in

Section 4.3.5. The threshold values between ∆kw,thr = 5 and 20 appear to be reasonable

choices. Conversely, thresholds ∆kw,thr = 40 to 100 underestimate the EDZ.

When comparing the EDZ size to literature references, such as Bossart et al. (2002),

an EDZ extension of approximately 0.5r is observed. Therefore, a threshold value of

5 is selected for all subsequent calculations, which is in good agreement with the EDZ

extension reported by Bossart et al. (2002).
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5.4.7. Temporal evolution of the EDZ area and permeability within

EDZ

With a robust method established for determining the size of the EDZ and its mean

permeability, the next step is to identify a representative time instance for conducting the

parameter study. This time will serve as the basis for further analysis, where the relevant

parameters are evaluated and their effects on the EDZ and its permeability are explored.

Therefore, the temporal evolution of the EDZ area as well as the mean permability ra-

tio is depicted in Figures 5.28 and 5.29. As can be observed, the EDZ develops quite

rapidly during the tunnel excavation reaching an EDZ area AEDZ = 17m2 and a mean

permeability ratio ∆k̄w,EDZ = 26.

Once the tunnel is excavated (t = 4.5 h), the EDZ continues to increase, which is asso-

ciated with the hydraulic changes within the EDZ due to the rise in permeability in the

fractured zone and the reduction of excess pore water pressures (both positive and nega-

tive) with time. However, the further increase after excavation is relatively modest, with a

final EDZ area AEDZ = 19m2 and a corresponding mean permeability ratio ∆k̄w,EDZ = 30,

compared to the changes observed during the tunnel excavation. Consequently, both the

time immediately at the end of excavation and the long-term scenario (up to 1000 days)

are valid choices for investigation. Given that the long-term evolution appears to be the

most critical, as here the EDZ area is highest, it is selected for the following conducted

parameter study.

10−2 10−1 100 101 102 103 104

Time t [h]

0

5

10

15

20

E
D
Z
ar
ea

A
E
D
Z
[m

2
]

end of excavation

Figure 5.28.: Temporal evolution of the EDZ area for the reference numerical model of

unsupported tunnel with ∆kw,thr = 5
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Figure 5.29.: Temporal evolution of the mean permeability ratio within the EDZ for the

reference numerical model of unsupported tunnel with ∆kw,thr = 5

In the evolution of permeability depicted in Figure 5.29, an initial increase is observed, fol-

lowed by a decrease and a subsequent rise during the tunnel excavation. This phenomenon

can be attributed to the fact that, at the beginning, only a few elements characterized

by high permeability (see Figure 5.23), which are the imperfect elements that first enter

plasticity, are considered in the EDZ calculation.

At this stage, no shear bands have formed, so the EDZ consists only of isolated, uncon-

nected elements. In this context, it must be noted that the EDZ is just beginning to

develop. As time progresses, the EDZ expands, incorporating elements with lower perme-

ability, such as those situated between two or more shear bands. Consequently, despite

the increase in area, the averaged permeability initially decreases.

By the end of the tunnel excavation, the mean permeability increases again, as the per-

meability in the shear bands becomes significantly higher, as shown in Figure 5.23. To

visually illustrate this growth over time, the calculated outer boundary of the EDZ at

various time instances is presented in Figure 5.30. As previously observed, the EDZ

experiences significant growth during the tunnel excavation, while thereafter its change

becomes minimal and locally limited to the 5◦ to 15◦ region, as shown in Figure 5.30.
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Figure 5.30.: Temporal evolution of the EDZ extension based on ∆kw,thr = 5 for the

reference numerical model of unsupported tunnel (end of excavation: 4.5 h)

In conclusion, it can be stated that among all examined metrics, the change in permeabil-

ity was selected for the systematic evaluation of the EDZ size. Through the systematic

investigation of various threshold values, an optimal threshold was determined.

Finally, the temporal evolution of the EDZ was analyzed, revealing that while the ma-

jority of the EDZ forms during tunnel excavation, the size still increased with time.

Consequently, the simulation end (1000 days) was chosen as considered time instance for

the subsequent parameter study presented in the following section.
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5.5. Parameter study of unsupported tunnel

After introducing the numerical model, boundary conditions, and techniques for modeling

tunnel excavation and support in the previous sections, a systematic approach was devel-

oped to determine the EDZ size, permeability, and the appropriate time for its assessment.

Building on these insights, this section presents a parameter study to systematically in-

vestigate the influence of selected model parameters on the Excavation Damaged Zone

(EDZ).

The study examines various factors, including mechanical law parameters, model geom-

etry, and regularization methods, to understand their impact on the numerically deter-

mined EDZ size and permeability evolution within the EDZ. Consistent with the approach

in Chapter 4, only one parameter is varied at a time, while all others remain constant.

The section begins by introducing the investigated parameters and their variations. This

is followed by a presentation and discussion of the parameter study results, concluding

with a summary of the findings.

5.5.1. Presentation of the investigated parameters

In the parameter study conducted in Section 4.3 on the biaxial test, the element size and

the second gradient elastic modulus D demonstrated an influence on shear strain localiza-

tion. Consequently, these parameters are also investigated in the current parameter study

on the tunnel model. Additionally, the number, location, and strength of the material

imperfections, which facilitate more robust localization, are examined. These factors are

highly uncertain, as they cannot be determined in situ, making their investigation an

essential part of this study. Furthermore, a geometric parameter, the tunnel diameter, is

also investigated within this study, to analyze if the EDZ size can be expressed by the

tunnel diameter.

Since the EDZ primarily develops during tunnel excavation and an unsupported tunnel

allows for further expansion of the EDZ compared to a supported tunnel, as will be shown

in Section 5.6, the present study is conducted exclusively for unsupported tunnels. The

insights gained from the parameter study will then be used for the simulation of the

supported tunnel.

As already mentioned, the parameter study of the biaxial test revealed hat a certain

element size should not be exceeded in order to allow for clear localization.
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Therefore, within this study, a total of five different element sizes are investigated: 0.20m

× 0.20m, 0.25m × 0.25m, 0.28m × 0.28m, 0.42m × 0.42m, and 0.82m × 0.82m, as

shown in Figure 5.31. This mesh study is limited to the near-tunnel area, since the EDZ

only forms in this region. Outside the near-tunnel area, the mesh is the same for all

investigated models. The red-marked elements in Figure 5.31 represent the imperfect

elements.

At the start of the parameter study, the influence of the imperfect elements is still unclear,

therefore they are placed only in the lower half of the modeled tunnel quarter. This deci-

sion is based on the expectation that, due to stress anisotropy, the EDZ forms primarily

in the horizontal rather than the vertical direction.

(a) 0.20× 0.20m

3722 elements

(b) 0.25× 0.25m

2412 elements

(c) 0.28× 0.28m

1938 elements

(d) 0.42× 0.42m

906 elements

(e) 0.82× 0.82m

472 elements

Figure 5.31.: Comparison of different element sizes for the unsupported tunnel model
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In addition to the element size, it was also observed that the second gradient elastic

modulus D influences the shear band width (see Chapter 4). Although reasonable values

for the second gradient elastic modulus D were already determined for the biaxial test

in Section 4.3.2, the tunnel model is significantly larger than the biaxial model. Due to

the size differences between the model domains, larger elements are used for the tunnel

model in order to keep the computational cost within a realistic range. Therefore, D is

re-examined as part of this parameter study. The chosen values for D can be found in

Table 5.2.

The necessity of incorporating imperfect elements was thoroughly discussed in the previ-

ous chapter, particularly in scenarios with highly homogeneous stress paths, such as the

wetting scenario in the biaxial test, where all elements follow a similar stress path during

saturation. While imperfect elements are mandatory in such cases to initiate localization,

it is not initially clear whether, or to what extent, they are required in the tunnel model.

However, according to Pardoen (2015), material imperfections are expected to facilitate

strain localization. Therefore, their role and influence are investigated as part of this

parameter study.

Similar to the approach in the biaxial test, this parameter study investigates four different

reductions in cohesion aimed at creating material imperfections. As a result, the yield

surface of the Barcelona Basic Model (BBM) becomes smaller, causing the imperfect

elements to reach plasticity earlier under the same stress path. This, in turn, triggers the

formation of shear bands. The reduced cohesion c, relative to the cohesion of the intact

elements c0, is expressed as c
c0

and took the values 0.01, 0.1, 0.5, and 0.75.

In addition to the strength of the material imperfections, the influence of the number of

imperfect elements is also investigated. A total of five different quantities, ranging from 4

to 8 imperfect elements, are examined. These imperfect elements are evenly distributed

across the lower half of the modeled tunnel quarter, as shown in Figure 5.32. The aim is to

determine whether the size of the EDZ is influenced by the number of imperfect elements

and to identify a reasonable number of imperfect elements for subsequent simulations.
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(a) 4 imperfect elements (b) 5 imperfect elements (c) 6 imperfect elements

(d) 7 imperfect elements (e) 8 imperfect elements

Figure 5.32.: Comparison of different numbers of imperfect elements at the excavation

face of the unsupported tunnel model

Lastly, the tunnel diameter is investigated. To isolate the influence of the tunnel diameter,

the following model discretization is employed. Based on the assumption that the EDZ

extends approximately half of the tunnel radius (0.5r) in the horizontal direction, the

near-tunnel area is set to 0.716r, based on models with a 14m diameter, as shown in

Figure 5.33. To avoid any effects from scaling and the associated changes in element

size, an approximately identical element size within this zone is used for each examined

diameter, to ensure that only the influence of the diameter is studied. A total of three

tunnel diameters, 6m, 10m, and 14m, are investigated.

Table 5.2 provides an overview of all the investigated parameters along with the considered

values. The bold values in the table represent the selected values which are kept constant

for the other scenarios.
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Figure 5.33.: Mesh strategy for unsupported tunnel model with different diameters

Table 5.2.: Sets of values in the parameter study for the unsupported tunnel model

Parameter Set of Values

Flow rule of mechanical law
Associated

Non-associated

Number of imperfect elements

4

5

6

7

8

Average element size within EDZ (m×m)

0.20× 0.20

0.25× 0.25

0.28× 0.28

0.42× 0.42

0.82× 0.82

Reduced cohesion of material imperfection c
c0

0.01

0.1

0.5

0.75

Second gradient elastic modulus D (N)

5× 101

5×102

5× 103

5× 104

Tunnel diameter d (m)

6

10

14
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5.5.2. Effect of flow rules of the mechanical law on the EDZ

The flow rule in an elastoplastic constitutive model governs the direction and magnitude

of plastic strain increments under applied stress, encompassing both deviatoric and volu-

metric strain components. This rule defines the relationship between the plastic potential

surface, which determines the strain direction, and the yield surface, which delineates

the onset of plasticity. The flow rule dictates the proportion of plastic volumetric and

deviatoric strains during the deformation process. Therefore, it can be expected that

the flow rule may also influence shear strain localization in terms of size, magnitude and

orientation. In the original formulation of the BBM, a non-associated flow rule (see Equa-

tions 2.16 and 2.17) was implemented, based on the assumption that zero lateral strains

occur for stress states corresponding to Jaky’s K0 values. This section examines to what

extent this assumption, compared to an associated flow rule (α = 1 in Equation 2.16),

affects shear strain localization.

For comparison, the deviatoric strains and the resulting permeability ratios after t = 1000

days are shown in Figures 5.34 and 5.35. When comparing the associated and non-

associated flow rules in terms of deviatoric strain as well as permeability ratio, only

marginal differences can be observed.
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(a) Associated flow rule
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(b) Non-associated flow rule
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Figure 5.34.: Comparison of total deviatoric strain within the unsupported tunnel model

for different flow rules (t = 1000 days)
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Permeability ratio ∆kw [-]

X

Y

<     0

     13

     26

     39

     53

     66

     79

     92

    106

    119

    132

>   145

  Belchen finer mesh no lining schoemp3                                  noliner_Ass_B4E7_D500_Dia7

CURVE OF VR89

TIME      DMULCUM 

 8.640E+07   1.00    

DELT=  13.3     

      X   1.00    

TMIN =  1.00    

TMAX =  109.    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 16/10/24

(a) Associated flow rule

X

Y

<     0

     13

     26

     39

     53

     66

     79

     92

    106

    119

    132

>   145

  Belchen finer mesh no lining schoemp3                               noliner_nonAss_B4E7_D500_Dia7

CURVE OF VR89

TIME      DMULCUM 

 8.640E+07   1.00    

DELT=  13.3     

      X   1.00    

TMIN =  1.00    

TMAX =  109.    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 16/10/24

(b) Non-associated flow rule
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Figure 5.35.: Comparison of permeability ratio within the unsupported tunnel model for

different flow rules (t = 1000 days)

Therefore, the plastic points and the bifurcation directions are also depicted in Fig-

ures 5.36 and 5.37, respectively. The plastic points indicate that the shear bands can

be more distinctly separated from the zones between them when using a non-associated

flow rule compared to an associated flow rule. This improved separation arises because

the regions between the shear bands remain predominantly in an elastic state under the

non-associated flow rule, creating a clearer contrast with the localized areas of plasticity

within the shear bands.
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(a) Associated flow rule
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(b) Non-associated flow rule

Figure 5.36.: Comparison of plastic points within the unsupported tunnel model for dif-

ferent flow rules (t = 1000 days)
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The bifurcation direction exhibits more pronounced differences between the associated and

the non-associated flow rule. With the associated flow rule, only elements within the shear

band meet the criterion, whereas using the non-associated flow rule, elements adjacent to

the shear bands also fulfill the criterion. This suggests that, with a non-associated flow

rule, more elements are prone to localization.

Subsequently, the EDZ area AEDZ, the mean permeability k̄w,EDZ, and the outer contour

of the EDZ are presented in Figure 5.38, with the two former values given in the legend.

As shown, the resulting EDZ area is 0.38m2 smaller with the non-associated flow rule

than with the associated one, while the resulting mean permeability differs only slightly.

The differences in the EDZ area, despite similar mean permeability, arise because the

non-associated flow rule leads to greater unloading in the regions between shear bands

due to localization. Consequently, these regions remain in the elastic range, leading to

correspondingly lower permeability. As a result, in the outer boundary regions, some

elements are considered in the EDZ area calculation for the associated flow rule that are

not considered for the non-associated one. This is clearly visible in the region between 5◦

and 10◦ in Figure 5.38. Since these boundary areas with lower permeability, which are

close to the threshold permeability ratio of ∆kw,thr = 5, are excluded, yet the areas within

the EDZ between the shear bands exhibit lower permeability compared to the associated

flow rule, these two factors cancel each other out, leading to an almost identical mean

permeability between the two flow rules.
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(a) Associated flow rule
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(b) Non-associated flow rule

Figure 5.37.: Comparison of bifurcation directions within the unsupported tunnel model

for different flow rules (t = 1000 days)
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Associated: AEDZ≈18.48m2, k̄w,EDZ≈5.94E-17m2

Non associated:AEDZ≈18.10m2, k̄w,EDZ≈6.08E-17m2

0°

10°

20°

30°

40°

50°

60°

70°
80°90°

Distance from tunnel wall

0 1
4 r

1
2 r

3
4 r r

Figure 5.38.: Extension of the EDZ based on ∆kw,thr = 5 for different flow rules (t = 1000

days)

It can be concluded that while the non-associated flow rule results in a more distinct

differentiation of the shear bands from the surrounding areas, the EDZ area is slightly

larger for the associated flow rule. Although the differences are relatively minor, the

associated flow rule is selected for all subsequent simulations due to the larger generated

EDZ size compared to the non-associated flow rule, thus representing the worst case

scenario.
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5.5.3. Effect of number of imperfect elements

As previously demonstrated, material imperfections are necessary for shear strain localiza-

tion under certain stress paths, such as the wetting path in the biaxial test in Section 4.3.2,

and generally enable more robust localization. While material imperfections cannot be

directly determined through in situ investigations, their importance was examined, among

others, by Desrues and Viggiani (2004) in laboratory tests. That study concluded that

material imperfections did not affect the global stress-strain response of the specimen

during biaxial testing but influenced the position of the shear band, as it acts as a strain

localization attractor. This section aims to investigate the influence of the number of im-

perfect elements on the EDZ size and mean permeability. A total of five different numbers

of imperfect elements are analyzed. As before, the deviatoric strains and the resulting

permeability changes are first examined, as shown in Figures 5.39 and 5.40.
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(a) 8 imperfect elements
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(b) 7 imperfect elements
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(c) 6 imperfect elements
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(d) 5 imperfect elements
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(e) 4 imperfect elements
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Figure 5.39.: Comparison of total deviatoric strain within the unsupported tunnel model

for different numbers of imperfect elements (t = 1000 days)
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(a) 8 imperfect elements
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(b) 7 imperfect elements
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(c) 6 imperfect elements
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Figure 5.40.: Comparison of permeability ratio within the unsupported tunnel model for

different numbers of imperfect elements (t = 1000 days)

In Figures 5.39 and 5.40 it can be seen that the more imperfect elements are present, the

more shear bands develop. This can be explained by the role of the imperfect elements,

which are introduced in the model to trigger shear strain localization. Beyond a certain

number of shear bands, it becomes impossible to distinguish the individual shear bands

from the areas outside of them, as seen e.g. in Figure 5.39a. This can be explained by

the fact that, due to the uniform distribution of the imperfect elements on the tunnel

excavation wall, the imperfect elements are positioned closer together, and thus the shear

bands. When looking solely at the extent of the EDZ, Figures 5.39 and 5.40 reveal

minimal differences between the investigated models. To quantify this, the EDZ size and

mean permeability ratio as a function of the number of imperfect elements are shown in

Figures 5.41 and 5.42.
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Figure 5.41.: EDZ area for different numbers of imperfect elements
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Figure 5.42.: Mean permeability ratio within the EDZ for different numbers of imperfect

elements

The calculated EDZ area and mean permeability show only minimal fluctuations between

the models analyzed. The EDZ area remains in the range of 18.4m2, and the mean

permeability ratio around 30. For three selected cases (4, 6, and 8 imperfect elements),

the calculated outer boundaries of the EDZ are shown in Figure 5.43. Again, very little

variation is observed between the models analyzed.
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4 imperfect elements: AEDZ≈18.48m2, k̄w,EDZ≈5.94E-17m2

6 imperfect elements: AEDZ≈18.37m2, k̄w,EDZ≈6.21E-17m2

8 imperfect elements: AEDZ≈18.34m2, k̄w,EDZ≈6.27E-17m2
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Figure 5.43.: Extension of the EDZ based on ∆kw,thr = 5 for different numbers of imperfect

elements (t = 1000 days)

This leads to the conclusion that while the amount of imperfections affects the number

and position of shear bands, it has no significant impact on the size of the EDZ or on the

mean permeability. Since no particular studies on the spacing of fractures in Opalinus

clay shale during tunnel excavation are available to validate a specific choice, it is decided

to proceed with the smallest number of imperfections, in this case four imperfections, to

minimize their potential influence on other model parameters and results, and because

they allow for a clear shear strain localization.
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5.5.4. Effect of element size

In this section, the influence of different element sizes on the EDZ is investigated. Al-

though the local second gradient model ensures mesh-independent shear strain localiza-

tion, as demonstrated in Section 4.3.1, the underlying finite element method, particularly

the shape functions used, requires a sufficiently fine mesh. This is especially important

when modeling shear bands, where sharp deformation gradients are present, to clearly

distinguish between the band and the area outside of it. This is visibly evident in Fig-

ures 5.44 and 5.45. For element sizes of 0.82 × 0.82m and 0.42 × 0.42m, the individual

shear bands consist of only one element in width, making it impossible to differentiate

between areas within the shear band and outside of the shear band. As the element size

decreases, the shear bands become more distinct. When comparing the three smallest

element sizes (0.28 × 0.28m, 0.25 × 0.25m, and 0.20 × 0.20m), no differences in shear

band width can be visually observed in Figures 5.44 and 5.45.

When calculating the EDZ area and permeability ratio within the EDZ, it becomes clear

that the decrease in element size leads to a decrease in the EDZ area and the mean

permeability, as depicted in Figures 5.46, 5.47 and 5.48. However, beyond a certain level

of mesh refinement, this trend reaches a limit, which is in this case for element sizes below

0.25 × 0.25m. This can be explained by the fact that with smaller elements, the shear

bands can be better distinguished by the model, resulting in a smaller EDZ area. Once a

certain element size is reached, further resolution or accuracy gain does not lead to any

additional changes in the obtained values.

In conclusion, as in the biaxial test, a certain element size is necessary to achieve distinct

shear bands. Once this element size is reached, further mesh refinement has no impact

on the resulting EDZ size. Therefore, for all subsequent calculations, an element size of

0.25 × 0.25m is used in the vicinity of the tunnel to keep the computational cost of the

simulations as low as possible.
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(a) 0.82× 0.82m
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Figure 5.44.: Comparison of total deviatoric strain within the unsupported tunnel model

for different element sizes (t = 1000 days)
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Figure 5.45.: Comparison of permeability ratio within the unsupported tunnel model for

different element sizes (t = 1000 days)
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Figure 5.46.: EDZ area for different element sizes (t = 1000 days)
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Figure 5.47.: Effect of element size on mean permeability ratio (t = 1000 days)
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Figure 5.48.: EDZ extension for different mesh sizes (∆kw,thr = 5, t = 1000 days)
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5.5.5. Effect of the shear strength of the material imperfection

In this section, the impact of the strength reduction of the material imperfection on

shear strain localization is examined. As Pardoen (2015) has already noted, an imperfect

element must exhibit a certain reduction in strength compared to the intact elements in

order to reach plasticity earlier and trigger shear strain localization. In this research, a

reduction in cohesion is considered as the material imperfection. Four different reductions

in cohesion relative to the initial cohesion c0 are investigated: c/c0 = 0.75, 0.5, 0.1, and

0.01.

First, the deviatoric strains and permeability changes are presented in Figures 5.49 and

5.50. It is already evident that a reduction in cohesion to 75% of the original cohesion

of 2MPa does not lead to localized failure, as shown in Figure 5.49a. Instead, a diffuse

failure is visible. However, at a reduction of 50% and more, shear bands become clearly

visible, and failure is localized. Between 10% and 1% of the original cohesion, no visual

differences can be observed in either the deviatoric strains (Figures 5.49c and 5.49d) or

the permeability changes (Figures 5.50c and 5.50d).

For a systematic analysis, the EDZ area and mean permeability within the EDZ are

calculated for all four cohesion reductions and shown in Figures 5.51 and 5.52. The

results indicate similar values for the EDZ area and mean permeability across the different

cohesion reductions. This is also reflected in the EDZ outer boundaries, which are depicted

in Figure 5.53.

Based on the previously discussed observations, it can be concluded that a certain reduc-

tion in cohesion is necessary to induce clear localized failure. However, the magnitude

of this reduction has only a marginal impact on the EDZ size and mean permeability, as

long it amounts 50% or more according to Figure 5.49a. Since no significant differences

are observed between cohesion ratios of c/c0 = 10% and 1%, a reduction to 10% of the

cohesion in intact elements, or 0.2MPa, is chosen for the subsequent simulations.
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Figure 5.49.: Comparison of total deviatoric strain within the unsupported tunnel model

for varying imperfection strength (t = 1000 days)
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Figure 5.50.: Comparison of permeability ratio within the unsupported tunnel model for

varying imperfection strength (t = 1000 days)
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Figure 5.51.: EDZ area for varying imperfection strength (t = 1000 days)
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Figure 5.52.: Mean permeability ratio for varying imperfection strength (t = 1000 days)
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Figure 5.53.: EDZ extension for varying imperfection strength (t = 1000 days)
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5.5.6. Effect of second gradient elastic modulus

For the chosen regularization method, the local second gradient model, the only param-

eter, the second gradient elastic modulus D, is analyzed regarding its influence on the

EDZ area and mean permeability within the EDZ. Since the second gradient modulus

acts as an internal length scale, it affects the width of the shear bands. This was already

demonstrated in Section 4.3.2 for the biaxial test. Since the element sizes were altered

due to the larger scale of the tunnel model compared to the biaxial test model, the second

gradient elastic modulus D must also be re-examined. Therefore, four different values of

D within the range of 5× 101 to 5× 104N are examined.

The deviatoric strains and the mean permeability are presented in Figures 5.54 and 5.55.
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(a) D = 5× 101N

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                                  noliner_Ass_B4E7_D500_D5e2

CURVE OF E−EQ

TIME      DMULCUM 

 8.640E+07   1.00    

DELT= 1.259E−02 

      X  0.100E+04

TMIN = 1.121E−03

TMAX = 0.221    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 16/10/24

(b) D = 5× 102N
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(c) D = 5× 103N
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(d) D = 5× 104N
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Figure 5.54.: Comparison of total deviatoric strain within the unsupported tunnel model

for different second gradient elastic moduli (t = 1000 days)
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(a) D = 5× 101N
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(b) D = 5× 102N
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(c) D = 5× 103N
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(d) D = 5× 104N
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Figure 5.55.: Comparison of permeability ratio within the unsupported tunnel model for

different second gradient elastic moduli (t = 1000 days)

Due to the difficulty in identifying the difference when examining the deviatoric strain

and the mean permeability ratio, the plastic points are additionally shown in Figure 5.56.

As can be seen there, as D increases, the width of the shear bands also increases, while

the outer boundaries of the EDZ are not affected by the different values of D.

To quantify this, the EDZ area and the mean permeability increase for all four models

are calculated and shown in Figures 5.57 and 5.58.
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(a) D = 5× 101N
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(b) D = 5× 102N
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(c) D = 5× 103N
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(d) D = 5× 104N

Figure 5.56.: Comparison of plastic points within the unsupported tunnel model for dif-

ferent second gradient elastic moduli (t = 1000 days)
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Figure 5.57.: EDZ area for different second gradient elastic moduli (t = 1000 days)
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Figure 5.58.: Mean permeability ratio for different second gradient elastic moduli (t = 1000

days)

It is evident from Figure 5.57 that the EDZ area for all four values of D remains around

18m2, and no noticeable influence on mean permeability is observed in Figure 5.58. This

can be explained by the fact that while D affects the width of the shear bands, it does not

affect their length, resulting in the same EDZ area, also supported by Figure 5.59, where

all four models show similar EDZ outer boundaries. Additionally, it was established in

previous chapters that the maximum shear strains are related to the width of the shear

bands. In other words, as the shear bands become wider, the maximum deviatoric strains

decrease proportionally, which in turn reduces the permeability changes. As a result, when

considered across the entire EDZ area, the permeability remains practically constant.

Although the influence of D on the EDZ area and permeability has proven to be minimal,

a value of D = 500N is selected for the subsequent calculations.



202 5. Numerical modelling of mechanized tunnel excavation
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Figure 5.59.: EDZ extension for different second gradient elastic moduli (t = 1000 days)

5.5.7. Effect of tunnel diameter

To investigate the influence of geometric parameters on the EDZ, the tunnel diameter

is examined in this parameter study with the intention to correlate it with the size of

the EDZ. Three models with tunnel diameters of 6m, 10m, and 14m are analyzed. As

described in Section 5.5.1, the models are discretized to ensure that the element size in the

tunnel nearfield remained constant between the three models, ensuring that the results

are not influenced by element size.

As shown in Figures 5.60 and 5.61, the EDZ size increases with increasing tunnel diameter.

For a quantitative analysis, the EDZ area and mean permeability are calculated for the

three tunnel diameters and presented in Figures 5.62 and 5.63.
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Figure 5.60.: Comparison of total deviatoric strain within the unsupported tunnel model

for different tunnel diameters (t = 1000 days)
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Figure 5.61.: Comparison of permeability ratio within the unsupported tunnel model for

different tunnel diameters (t = 1000 days)

From Figures 5.60 and 5.61, the EDZ area appears as a percentage of the tunnel’s nearfield

region (see Figure 5.33). Therefore, the EDZ area is plotted against the square of the

tunnel diameter (d2) in Figure 5.62. The results demonstrate a linear relationship between

the EDZ area and the square of the tunnel diameter. It should be mentioned that a linear

trend is also observed when plotting the EDZ area over the tunnel cavity. However, the

choice of d2 is motivated by its enhanced clarity, particularly in regards to the integer

values that are plotted on the x-axis. Similarly, the mean permeability is also dependent

on the tunnel diameter, as the linear correlation in Figure 5.63 reveals. However, unlike

the EDZ area, the mean permeability has a linear relationship with the diameter, not
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with the square of the diameter. This can be attributed to the fact that the mean

permeability has already been divided by the EDZ area in the calculation. Furthermore,

the mean permeability decreases with increasing tunnel diameter, which can be explained

by the fact that, since all three models have the same element size, the elements between

the shear bands in the larger-diameter model can be better distinguished than in the

smaller-diameter models, as seen in Figures 5.60a and 5.60c. This trend is similar to the

results observed in the study on element size in Section 5.5.4. It should be emphasized at

this point that this results from the fact that the element size was determined based on

the tunnel model with a tunnel diameter of d = 14m and was not adjusted for smaller

diameters in order to eliminate any influence of element size in this investigation.
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Figure 5.62.: EDZ area as a function of the square of the tunnel diameter (t = 1000 days)

When examining the outer boundaries of the EDZ normalized by the tunnel radius, it

becomes clear that the normalized EDZ is nearly identical for all three models, as shown

in Figure 5.64.

In conclusion, the tunnel diameter has the most significant influence on the EDZ area

compared to the other investigated parameters, with the EDZ size being proportional to

the square of the diameter.
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Figure 5.63.: Mean permeability ratio as a function of tunnel diameter (t = 1000 days)

d = 6m:AEDZ≈ 3.60m2, k̄w,EDZ≈6.60E-17m2

d = 10m:AEDZ≈ 9.52m2, k̄w,EDZ≈6.29E-17m2

d = 14m:AEDZ≈18.48m2, k̄w,EDZ≈5.94E-17m2
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Figure 5.64.: EDZ extension for different tunnel diameters, shown in terms of distance

normalized by the tunnel radius (t = 1000 days)
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5.5.8. Conclusion of parameter study

In this parameter study, various parameters related to the mechanical constitutive model,

regularization method, mesh discretization, and geometric characteristics of the tunnel

model were examined with respect to their influence on the EDZ area and mean per-

meability ratio. Regarding element size, it was demonstrated that a sufficiently small

element size is required to achieve clear shear band localization. For the second gradient

modulus of the regularization method, it was found to influence the width of the shear

bands but not the extent of the EDZ, meaning that this parameter has no significant

effect on the EDZ area or mean permeability.

While material imperfections influence the occurrence of shear bands, they have no signif-

icant effect on the EDZ area or mean permeability. Similarly, the choice of the flow rule in

the mechanical model affects the regions outside the shear bands, but not the EDZ area

or mean permeability. The key parameter affecting the EDZ area is the tunnel diameter,

with the EDZ area being approximately proportional to the square of the tunnel diameter.

With these findings, the next section will analyze the influence of different tunnel supports.

The parameters highlighted in bold in Table 5.2 will be used for these analyses.

5.6. Comparative analysis of tunnel support strategies

After presenting the constitutive model parameters of the tunnel supports (Section 5.3.3)

and the staged construction process of the supported tunnel (Section 5.3.4), this section

focuses on evaluating the two tunnel support strategies, namely rigid and deformable

support. It should be recalled at this point that the rigid support consists of a tunnel lining

and a rigid grouting layer, whereas the deformable support uses the same tunnel lining

but features a deformable grouting layer. Thus, the two support systems differ only in

terms of the grouting layer. The comparison will include an analysis of their effects on the

resulting EDZ and mean permeability within the EDZ, including a comparison with the

unsupported tunnel model studied in the previously performed and discussed parameter

study. Furthermore, the deformations of the tunnel support system are analyzed as well

as the internal forces (normal force and bending moment) of the tunnel lining, to gain

insights of both tunnel support strategies with the goal to evaluate their performance.
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5.6.1. Saturated initial conditions

In this section, the tunnel support systems are analyzed for the initially fully saturated

conditions assumed for the Belchen tunnel. In the subsequent Section 5.6.2, the same

analyses is performed for initially unsaturated conditions in order to highlight the differ-

ences between the tunnel support systems more clearly.

5.6.1.1. Evaluation of the resulting EDZ and mean permeability

Since the tunnel support is constructed only after the completion of tunnel excavation,

the comparison of the tunnel support strategies corresponds to the end of the simulation

at t = 1000 days, as was the case with the unsupported tunnel model. This ensures a

consistent basis for evaluating the differences in performance between the supported and

unsupported scenarios. As the main growth of the EDZ occurs during the excavation of

the tunnel, the extent to which the tunnel support influences this expansion is limited to

the time after the end of excavation.

Initially, the deviatoric strains and the resulting permeability changes are presented in

Figures 5.65 and 5.66 for all three cases as an indicator of the EDZ. Although the differ-

ences between the models are minor, a more significant extension of the EDZ is observed in

the case of the unsupported tunnel, while the EDZ extend is smaller for the two supported

tunnels.

For a systematic evaluation, the EDZ area and the mean permeability are calculated

for all three models and displayed along with the EDZ outer boundary in Figure 5.67.

Between 0◦ and 27◦, small variations in the EDZ extension between the three scenarios

are noticeable, while from 27◦ to 50◦ no changes are visible. The unsupported tunnel

shows the largest EDZ area and mean permeability, followed by the deformable tunnel

support, and then the rigid tunnel support.

Considering that the EDZ after the completion of excavation (t = 4.5 h), according to

Figure 5.24, has an area of 17m2 and, according to Figure 5.25, a mean permeability of

5.23E-17m2, the rigid support results in an increase of the EDZ area of about 1%, the

deformable tunnel support in approximately 3%, and the unsupported tunnel in an 8.5%

increase compared to the moment of support installation.
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(a) Unsupported tunnel
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(b) Deformable support
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(c) Rigid support
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Figure 5.65.: Comparison of total deviatoric strain within the numerical models of unsup-

ported and supported tunnels, each with a tunnel diameter d = 14m (t = 1000 days)

When focusing solely on the size of the EDZ, it can be summarized that the stiffer the

tunnel support, the smaller the EDZ and the higher the mean permeability. However,

it is important to emphasize that most of the EDZ forms during the tunnel excavation

phase, on which the choice of the tunnel support has no impact.

To investigate the different tunnel supports in greater detail, additional analyses are

conducted, as on the radial deformations of the tunnel support system, and on the internal

forces (normal force and bending moment). This provides deeper insight into how each

support strategy interacts with the surrounding clay shale and responds to the pressures

induced by the excavation and swelling phenomena.
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(a) Unsupported tunnel
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(b) Deformable support
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(c) Rigid support
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Figure 5.66.: Comparison of permeability ratio within the numerical models of unsup-

ported and supported tunnels, each with a tunnel diameter d = 14m (t = 1000 days)
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Rigid grout: AEDZ≈17.13m2, k̄w,EDZ≈5.26E-17m2

Deformable grout: AEDZ≈17.60m2, k̄w,EDZ≈5.60E-17m2

No support: AEDZ≈18.48m2, k̄w,EDZ≈5.94E-17m2
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Figure 5.67.: EDZ extension for unsupported tunnel without lining and supported tunnels

with deformable and rigid grouts (t = 1000 days)
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5.6.1.2. Analysis of tunnel support system deformations and internal forces of

tunnel lining

In this section, the impacts acting on the tunnel support system after the completion of

the tunnel excavation are first elaborated. Subsequently, the deformations of the individ-

ual tunnel support components, specifically the tunnel lining and grouting, are examined

to gain an understanding of the interactions between the individual tunnel support sub-

systems and the surrounding ground for each tunnel support strategy. Furthermore, the

resulting internal forces, including normal forces and bending moments, in the tunnel

lining are analyzed, as these represent critical design parameters for the tunnel support.

To interpret the tunnel support deformations and the internal forces in the tunnel lining, it

is first necessary to analyze the forces acting on the tunnel support system after the tunnel

support installation. Since the excavation is complete, no significant external mechanical

influences are expected. Therefore, the main focus is on the hydro-mechanically coupled

effects.

As already described in Section 5.4.2 for the unsupported tunnel, a negative pore water

pressure, or suction, develops at the tunnel crown due to the low permeability of the

Opalinus clay shale and the rapid unloading from the tunnel excavation, while at the

tunnel side an excess pore water pressure develops. As shown in Figure 5.68a, a suction of

approximately 1MPa occurs at the tunnel crown immediately after the excavation (4.5 h).

Additionally, an excess pore water pressure develops at the tunnel side, reaching around

5MPa. Over time, both the suction and the excess pore water pressure decrease until

finally reaching the atmospheric pressure, as seen in Figure 5.68b. The reduction in suction

leads to volumetric swelling strains, as described by Equation 2.9. These volumetric

strains generate forces (Fswell) on the tunnel support system when they are restrained

from freely expanding, leading to deformations as idealized in Figure 5.69. Additionally,

the reduction of the excess pore water pressure, also referred to as consolidation, at

the tunnel side leads to an increase in the net mean stresses. This, in turn, results in

deformations (ux) at the tunnel side, which are also shown in Figure 5.69.

Based solely on these two processes, it can be concluded that, when considering only

the modeled quarter of the tunnel, depending on the stiffness of the tunnel support, the

deformation of the tunnel support system can be referred to as a rotation, as illustrated

in Figure 5.69a.
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(a) End of excavation (4.5 h)
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(b) Long-term (1000 days)
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Figure 5.68.: Comparison of pore water pressure distribution for supported tunnel model

after tunnel excavation

(a) Simulated quarter of the tunnel (b) Full tunnel

Figure 5.69.: Idealization of the impacts and resulting deformation of the tunnel support

system for the supported tunnel

However, when constructing the full tunnel from the quarter model, this rotation manifests

as tunnel ovalization, as depicted in Figure 5.69b.

After discussing the key impacts on the tunnel support system, the deformations of the

tunnel support system and the internal forces can now be analyzed.

Therefore, the radial deformations of the two tunnel support strategies are assessed, start-

ing with the radial deformations of the tunnel lining, which is analyzed beginning with
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the end of excavation (t = 4.5 h) till 1000 days. The radial deformations are calculated

based on the deformations of the tunnel lining in the x- and y-directions and are shown

in Figure 5.70 for both tunnel support strategies.

Throughout the excavation process, the nodes of the tunnel lining are maintained in a

fixed position, both horizontally and vertically, thereby preserving the tunnel lining’s

initial shape (blue line). As a reminder, in the simulation, the lining is present from the

beginning but does not interact with the ground due to the use of a dummy layer between

the tunnel lining and the surrounding ground. Subsequently, the fixity of the tunnel lining

is released, enabling the lining to undergo deformation.

Over time, the lining at the tunnel crown moves toward the tunnel center, while at

the tunnel sides it moves away from the center. This results in both a rotation and

ovalization of the tunnel lining, as illustrated in Figure 5.69. Up to t = 10 days, the lining

deformations for both scenarios are practically identical. In the final state, however, it

is observed that the lining surrounded by a rigid grout layer (solid red line) deforms

approximately 2.5mm less at the crown and 1mm less at the tunnel sides compared to

the lining surrounded by a deformable grout layer (dashed red line).

The deformations of the tunnel lining can be explained by the dissipation of both, the ma-

tric suction above the tunnel crown and the excess pore water pressure at the tunnel side,

generated during excavation. With increasing time the suction above the tunnel crown

get dissipated which leads to volumetric strains, as depicted in Figure 5.68. The subse-

quent handling of volumetric swelling strains by the tunnel support system is dependent

upon the deformations undergone by the tunnel support system, similar to the swelling

tests presented in Section 3.4. A very rigid support leads to the development of swelling

pressure, similar to the volume-constant swelling test. Conversely, a highly deformable

support or the absence of any support results in swelling strains, comparable to the free

swelling test. In most cases, an intermediate response occurs, similar to the deformation-

controlled swelling test. The volumetric swelling strains, which are a consequence of the

resaturation of the clay shale, elucidate the phenomenon of tunnel deformation at the

crown.

The radial deformation at the tunnel side, on the other hand, can be attributed to two

factors. First, the horizontal stresses are lower than the vertical stresses due to the

anisotropic stress state, resulting in less resistance in the horizontal direction. Second,

consolidation, or the dissipation of the excess pore water pressure at the tunnel side, leads

to additional deformations. Due to the presence of shear bands at the tunnel side, this

consolidation occurs more rapidly because of the increased permeability within the shear
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bands. It should be noted that in reality the tunnel lining consists of several individual

segments. These individual segments can deform and rotate among themselves to a certain

extend. Due to the simplified modeling of the lining as a single volume, the bending

stiffness and consequently the resulting rotation of the whole lining is overestimated.

At the first glance, the deformations of the tunnel lining suggest minimal differences

between the two support systems. However, to fully understand the entire support system,

it is mandatory to analyze the compression of the grout layer and the deformation of the

surrounding ground, presented in the subsequent sections.

Rigid grout

Time=4.5 h

Time= 1day

Deformable grout

Time=10days

Time=1000days
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Figure 5.70.: Radial displacements of tunnel linings in supported tunnels (t = 1000 days)
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For the grouting layer between the tunnel lining and the surrounding clay shale, the

strains within the grouting layer are more relevant to analyze rather than the inner and

outer displacements. The reason for this is the expectation that the deformable grout,

as its name suggests, compresses rather than deforming similarly on both its inner and

outer surfaces, as the tunnel lining does. Therefore, for both tunnel support strategies,

the radial strains in the grouting layer are evaluated at selected time steps and are shown

in Figure 5.71.

For both support strategies, zero initial radial strains are assumed, since the end of tunnel

excavation, when the grout layer is activated, serves as the baseline for the evaluation.

However, at t = 1 day (green line), relatively small positive radial strains are observed in

both cases. This can be explained by the grout material being injected into the annular

gap with an injection pressure, modeled as an initial stress in the grouting elements in the

numerical model. Between t = 1 and t = 10 days, the strains change only slightly, but

at t = 1000 days, a significant shift is visible for the deformable grout (dashed red line).

At the tunnel side, the deformable grout compresses by approximately 1.5%, whereas no

notable compression is observed at the tunnel crown. In contrast, the rigid grout remains

almost undeformed.

In both tunnel scenarios, peaks in the radial strains of the grout layer can be observed at

the locations of the shear bands, as shown in Figure 5.71. These peaks are comparable to

the peaks in the deformations of the surrounding ground in the unsupported tunnel case,

illustrated in Figure 5.13a. The reason for the peaks in the unsupported tunnel cases was

attributed to the stress concentrations at the location of the shear bands, as explained

earlier in Section 5.4.2, which applies here as well.

It may initially seem counterintuitive that the grout layer does not deform where the

swelling occurs (at the tunnel crown), but at the tunnel side. However, this behavior can

be explained, but it requires an analysis of the ground deformation at the tunnel wall, as

this provides essential information to fully understand the overall behavior of both tunnel

support systems.
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Figure 5.71.: Radial strain of the annular gap grout in supported tunnels (t = 1000 days)

For analyzing ground deformation at the tunnel wall, shown in Figure 5.72, zero initial

deformations are assumed for t = 4.5 h (end of excavation) to isolate the effects of the

two tunnel support strategies, by excluding the ground deformations occurring during the

excavation process.

From the end of excavation to t = 10 days, both tunnel support strategies exhibit similar

behavior: settlement occurs at the tunnel crown, while a deformation along the x-axis is

seen at the tunnel side. The tunnel crown deformation can be explained by the reduc-

tion of the suction above the tunnel crown, which leads to swelling, resulting in crown

deformation. Due to the low permeability, the suction is gradually dissipated over time,

leading to increasing deformation of the tunnel crown. The deformations at the tunnel

side are partly due to the anisotropic stress state, where the horizontal stress is lower

than the vertical stress, thus favoring horizontal deformation where resistance is reduced.

Additionally, consolidation at the tunnel side contributes to these deformations.
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Comparing the radial displacements of the tunnel wall (see Figure 5.72) and the linings

(see Figure 5.70) at t = 10 days reveals almost identical values. Given the minimal strain

observed in both of the grout layers at this time, it can be concluded that the tunnel lining

and the grout layer are moving as a single unit. Examining the end of the simulation at

t = 1000 days, however, highlights differences between the two tunnel supports. For

the rigid support, the tunnel support remains structurally homogeneous due to its high

stiffness. This means that, with increasing swelling at the tunnel crown, the support

system (lining and grout) shifts toward the tunnel center. However, because the lateral

pressure on the tunnel side is lower as already explained, a rotation of the tunnel support

can be observed, accompanied by a lateral displacement of the tunnel side in the x-axis

direction.

In contrast, with the deformable support, the grout layer at the tunnel sides appears

to have reached its yield stress threshold, leading to significant deformation. This is

evident as the tunnel lining undergoes almost 8mm displacement in the x-direction (see

Figure 5.70), whereas the tunnel wall shifts by only about 4mm (see Figure 5.72). The

difference (4mm displacement) is related to the compression of the deformable grout

layer. Considering that the radial distance between the tunnel lining and the surrounding

ground is approximately 15 cm after excavation, a deformation of 4mm corresponds to

the calculated radial strains of about 2% in the grouting layer, as depicted in Figure 5.71.
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Figure 5.72.: Radial displacement of tunnel wall after excavation in supported tunnels

(t = 1000 days)

In addition to the previously analyzed deformations, the radial stress acting on the tunnel

lining provides insights into the interaction between the individual components of the

tunnel support system. Analyzing this stress helps to better understand the development

of internal forces within the tunnel lining, calculated in the following. For this purpose, the

stress distribution along the outer surface of the tunnel lining is extracted and transformed

into polar coordinates. The resulting radial stress distributions for both tunnel support

scenarios are illustrated in Figure 5.73. Examining the radial stress distribution reveals

stress peaks at the locations of the shear bands at about 0◦, 15◦, 30◦, and 45◦. The reasons

for these peaks are the previously described stress concentrations at the location of the

shear bands.

Comparing both tunnel support strategies reveals a significant reduction in radial stress

for the deformable tunnel support compared to the rigid support. In the tunnel crown,



5.6. Comparative analysis of tunnel support strategies 219

the radial stress decreased from 0.3MPa to nearly zero, while in the tunnel sidewalls, it

reduces from -1.3MPa to -0.4MPa.

In case of the rigid tunnel support, the larger radial stresses can be explained by the

negligible deformation of the rigid grout (see Figure 5.71), despite similar overall tunnel

lining deformations (see Figure 5.70). At the tunnel side, this results in compressive

stresses in the tunnel lining, as the tunnel lining and the grout layer are pressed into the

ground, due to the rotation initialized by the volumetric swelling strains above the tunnel

crown, in addition to the consolidation at the tunnel side.

In the deformable tunnel support scenario, the compressive stresses acting on the lining at

the tunnel side are reduced by the deformable grout layer. This behavior results from the

ability of the grout to deform and dissipate a portion of the stresses that would otherwise

transfer directly to the tunnel lining. Consequently, the deformable grout acts as a buffer,

moderating the stress concentration and leading to a more uniform distribution of radial

stresses acting between the tunnel support components and the surrounding ground, as

can be seen in Figure 5.73.

The tensile stresses observed in the rigid tunnel support scenario at the tunnel crown

can be attributed to the previously discussed rotation of the tunnel lining. The lining is

pressed into the ground at the tunnel side. Since there is no interface between the lining

and grout or between the grout and clay shale (nodes are shared across layer boundaries),

the rotation causes extension at the tunnel crown. Due to the higher stiffness of the rigid

grout and resulting limited deformation, tensile stresses are induced.

It should be noted at this point that tensile stresses or extension of the grout are not

expected in reality, as the grout layer would crack or separate under tensile stresses,

which represents a limitation of the modeling approach.

In contrast, the deformable grout layer expands at the tunnel crown, as shown in Fig-

ure 5.71, effectively preventing the transfer of significant tensile stresses to the tunnel

lining. It should be noted that the tunnel lining also deforms due to swelling effects,

meaning the observed behavior is not solely a pure rotation but rather a combination of

convergence and rotation or ovalization of the tunnel lining. This dual effect explains why

the radial stresses at the tunnel side are higher compared to those at the tunnel crown.

The swelling-induced deformations cause the tunnel crown to move inward toward the

center, while the tunnel sides experience outward movement. This uneven displacement

pattern increases the compressive stresses and the consolidation of the surrounding ground

at the tunnel side.
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Figure 5.73.: Radial stress acting on the outer lining surface of deformable and rigid tunnel

support system (t = 1000 days)

With the insights gained from the deformation and stress analyses, the internal forces, in

this case normal forces and bending moments, of the tunnel lining are evaluated.

For that purpose, the stress linearization method (ASME, 2015) is used, which is com-

monly implemented in various finite element codes such as Abaqus or COMSOL. It should

be noted that this method is not available in the finite element framework Lagamine used

in this study. To perform this analysis, the cartesian stresses (σxx, σyy, and σxy) at all

integration points of the tunnel lining are extracted, transformed into a polar coordinate

system, and decomposed into membrane and bending stresses over the tunnel lining width

using the previously mentioned stress linearization method. The membrane stress is then

used to calculate the distribution of normal forces within the tunnel lining, while the

bending stress is used to calculate the bending moments. Figure 5.74 shows the resulting

distribution of normal forces in the tunnel lining for both the rigid and deformable tunnel

supports.



5.6. Comparative analysis of tunnel support strategies 221

Supported tunnel with rigid grout

Supported tunnel with deformable grout

0°

10°

20°

30°

40°

50°

60°

70°
80°90°

Normal force N [MN/m]

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4

Figure 5.74.: Normal force in the linings of deformable and rigid tunnel support systems

(t = 1000 days)

As observed, there are positive normal forces (tensile forces) at the tunnel crown and

negative normal forces (compressive forces) along the tunnel side. When considering that

the surrounding ground is stable, the source of the observed compressive forces at the

tunnel side, is primary the swelling force Fswell resulting from the volumetric swelling

strains of the clay shale above the tunnel crown, as depicted in Figure 5.69a. This force

is primarily transferred to the vertical support, which is required due to the symmetry

of the system, at the bottom of the tunnel lining, as illustrated in Figure 5.69a. The

tensile forces result from the horizontal movement of the tunnel lining at the tunnel side,

as highlighted in Figure 5.69a, the resulting rotation, and the associated tensile stresses

between the tunnel lining, grout, and surrounding soil at the tunnel crown. It should be

emphasized once again that tensile forces at the tunnel crown do not occur in reality and

arise from a model simplification, as previously explained.

A comparison of the two tunnel support strategies reveals that the deformable tunnel

support strategy significantly reduces the normal forces. In the tunnel crown, the normal
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forces are reduced from 3.39MN/m to 0.84MN/m, representing a 75.3% reduction. At the

tunnel sides, the normal forces decrease in absolute value from 6.11MN/m to 2.52MN/m,

corresponding to a 58.8% reduction. Due to the higher deformation of the deformable

tunnel support system compared to the rigid system, as observed in the ovalization of

the tunnel lining in Figure 5.70 and the compression of the grout layer in Figure 5.71, a

reduction in the radial stresses acting on the tunnel lining is observed, as already explained

in the previous section. As a result of this decrease, the normal forces in the lining of the

deformable tunnel support system also decrease.

Finally, the bending moments are examined. The bending moments calculated using stress

linearization from the resulting bending stress are shown in Figure 5.75. As can be seen,

positive bending moments occur at the tunnel crown, while negative bending moments

are found at the tunnel sides. Since the bending moments have a linear relationship with

the curvature of the lining, and curvature, in turn, corresponds to the second derivative

of the deformation, this relationship provides a basis for explaining the distribution of the

bending moments.

The positive bending moments in the tunnel crown can be explained by the deformation

of the tunnel lining towards the tunnel center in this region. Negative bending moments

are found at the tunnel side, as here the deformation occurs in the opposite direction,

away from the tunnel center. The fact that the absolute values of the bending moment

are higher in the tunnel crown than at the tunnel side for both support strategies can

also be explained by the lining deformations illustrated in Figure 5.70. As shown, the

deformations and the curvature of the tunnel lining in the tunnel crown are significantly

larger than at the sides, which aligns with the observed bending moment distribution.

When comparing the two support strategies, it becomes apparent that in the tunnel crown

and at the tunnel sides the deformable tunnel support exhibits higher bending moments

than the rigid support. However, in some central sections, the opposite trend can also be

observed. This can be explained by the fact that the tunnel lining deforms slightly more

with the deformable tunnel support, compared to the rigid tunnel support, as shown in

Figure 5.70.
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Figure 5.75.: Bending moment in the linings of deformable and rigid tunnel support system

(t = 1000 days)

5.6.2. Unsaturated initial conditions

As shown in the previous section, the differences between the rigid and deformable tunnel

support systems are minor in case of initially saturated conditions. It should be empha-

sized once more that the initial degree of saturation in the surrounding Opalinus clay

shale at the Belchen tunnel remains unknown. Therefore, the previous simulations as-

sumed fully saturated initial conditions based on observations from the Mont Terri Rock

Laboratory, where Opalinus clay shale occurs at a similar depth.

Under these initially saturated conditions, the volume increase of the surrounding clay

shale acting on the tunnel support is attributed solely to mechanical swelling. This

swelling results from the unloading of the clay shale during excavation in combination

with its low permeability.
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Since larger differences between the tunnel support systems are expected for initially

unsaturated conditions due to the swelling associated with the saturation of Opalinus clay

shale, additional simulations are conducted assuming such initial conditions. Therefore,

an initial suction s = 35MPa is set in all elements of the Opalinus clay shale within the

numerical model.

5.6.2.1. Evaluation of the resulting EDZ and mean permeability

To investigate the influence of the tunnel support system on the EDZ, the permeability

ratio at the end of the simulation (t = 1000 days) is shown in Figure 5.76. As the figure

indicates, the EDZ extent is greatest for the unsupported tunnel, followed by the tunnel

with deformable support. The rigid support results in the smallest EDZ extent, and the

shear bands are shorter compared to the other two cases. This can be attributed to the

reduced tunnel wall convergence resulting from the rigid support, which will be examined

in greater detail in the following section.

To quantify the EDZ area and to highlight the differences of the various tunnel support

systems, the temporal evolution of the EDZ area for each tunnel support strategy is

calculated and depicted in Figure 5.77. A common feature among all models is that the

main EDZ growth occurs after excavation, in contrast to the initially saturated model

where most EDZ growth takes place during excavation, as shown in Figure 5.28. These

differences result from the fact that under initially saturated conditions, the unloading

caused by the tunnel excavation is already sufficient to induce plastic deformations in the

form of shear bands during the excavation phase. In contrast, under initially unsaturated

conditions, the yield surface in p − q space is larger compared to the initially saturated

case. As a result, the unloading caused by the tunnel excavation alone is not sufficient

to trigger plastic deformations. In this case, the formation of shear bands is caused by

the reduction in suction following saturation after the tunnel excavation, which leads to

wetting-induced softening.

Up to approximately 10 h, the EDZ areas for all three support strategies are nearly identi-

cal, with an EDZ area of about AEDZ = 8m2. Beyond this point, the unsupported tunnel

and the tunnel with deformable support exhibit continuous growth of the EDZ area, which

appears linear in the logarithmic plot. In contrast, the tunnel with rigid support shows a

slower increase in EDZ area. At the end of the simulation (t = 1000 days), the EDZ areas

of the unsupported tunnel and the tunnel with deformable support are AEDZ = 60m2 and

AEDZ = 56m2, respectively. The EDZ area for the tunnel with rigid support is less then

half, with an area of AEDZ = 26m2.
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(b) Deformable support
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Figure 5.76.: Comparison of permeability ratio within the initially unsaturated (s =

35MPa) numerical models of unsupported and supported tunnels, each with a tunnel

diameter d = 14m (t = 1000 days)

Although the development of the EDZ is not yet fully completed after 1000 days under

initially unsaturated conditions, the simulation time frame and all previously defined

parameters, particularly those controlling the permeability increase as a function of shear

strains and the threshold used to evaluate the EDZ, are not adjusted for the initially

unsaturated tunnel simulations in order to maintain comparability with the previously

studied simulations under saturated initial conditions.

In addition to the EDZ area, the temporal evolution of the mean permeability ratio

is calculated and illustrated in Figure 5.78. In all cases, the mean permeability ratio

increases rapidly during excavation and then decreases until reaching an equilibrium value.

The explanation follows the same reasoning as discussed in Section 5.4.7. During the EDZ

growth process, the calculated EDZ area initially consists of non-contiguous elements with
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Figure 5.77.: Comparison of the temporal evolution of the EDZ area within the initially

unsaturated (s = 35MPa) numerical models of unsupported and supported tunnels

increased permeability. Once the shear bands are fully developed, the EDZ area also

includes elements between the shear bands that do not exhibit increased permeability,

leading to an overall reduction in the mean permeability.

Comparing the different tunnel support strategies, it becomes evident that the unsup-

ported tunnel results in the highest mean permeability ratio, followed by the tunnel with

deformable support and then the tunnel with rigid support. This is consistent with the

previously analyzed EDZ areas.

While the EDZ is an important quantity, and it can already be concluded that the rigid

support results in the smallest EDZ area and the lowest permeability increase within the

EDZ, the tunnel support systems themselves are at least equally important to examine.

Therefore, the following section evaluates the deformations of the individual components

of the tunnel support system as well as the internal forces within the tunnel lining.
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Figure 5.78.: Comparison of the temporal evolution of the mean permeability ratio within

the initially unsaturated (s = 35MPa) numerical models of unsupported and supported

tunnels

5.6.2.2. Analysis of tunnel support system deformation and internal forces of

tunnel lining

Before evaluating the deformation of the tunnel support systems and the internal forces

within the tunnel lining, it is essential to analyze the loads acting on the tunnel support.

This provides the foundation for understanding the resulting deformations and internal

forces. Particularly important under initially unsaturated conditions is the pore water

pressure distribution after the tunnel excavation, as the saturation level of these elements

governs the magnitude of swelling acting on the tunnel support system.

Figure 5.79a shows the pore water pressure distribution after tunnel excavation (t =

4.5 h). It can be observed that almost all elements in the near-field of the tunnel remain

at their initial suction level of approximately 35MPa. Two exceptions are present. A

small zone of elements at the tunnel crown shows a further increase in suction to around

38MPa, while some elements at the tunnel side exhibit a slight reduction in suction to

approximately 33MPa. These variations can be explained by the initial anisotropic stress

state, which leads to ovalization of the tunnel wall during excavation. Combined with

the low permeability, the elements at the tunnel crown tend to expand volumetrically,

resulting in increased suction. In contrast, elements at the tunnel side exhibit the opposite

behavior. This phenomenon was also observed in the tunnel model with initially saturated

conditions, as discussed in the previous section.
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The elements near the tunnel wall are already close to full saturation. This is a con-

sequence of the prescribed pore water pressure boundary condition at the tunnel wall,

which is applied during and after excavation, as previously described in Section 5.3.2.

As a result, saturation of the Opalinus clay shale proceeds from the tunnel wall toward

the surrounding clay shale. The main difference between the previously studied initially

saturated case and the currently analyzed initially unsaturated case lies in the higher

suction levels after excavation, which lead to a greater reduction in suction during the

saturation phase. This results in larger volumetric deformations, which are acting on the

tunnel support system.

Since the EDZ is expected to develop primarily at the tunnel side, as observed in the

previously studied cases, the increased permeability in this zone accelerates resaturation,

leading to a faster reduction of suction and thus causing the elements within the EDZ to

swell more rapidly. This behavior is illustrated in Figure 5.79b.

After analyzing the pore water pressure distribution, indicating the impacts acting on the

tunnel support system, the deformations of the tunnel support are now evaluated. For

this purpose, the temporal evolution of the radial deformations of the tunnel lining is

examined for both scenarios, rigid and deformable support, as shown in Figure 5.80. The

evaluation is carried out at four specific times: 4.5 h, 1 day, 10 days, and 1000 days.
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Figure 5.79.: Pore water pressure distribution at the end of excavation (left) and ideal-

ization of the impacts and resulting deformation of the tunnel support system (right) for

the initially unsaturated tunnel model
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In the case of the rigid support, the tunnel lining is directly affected by swelling, which

begins at the tunnel side due to the increased permeability in the EDZ. As a result,

radial deformation of the tunnel lining occurs from the tunnel side toward the tunnel

center. Due to the rigidity of the tunnel support, radial deformation at the tunnel crown

directed outward is also observed, as illustrated in Figure 5.80. Once the maximum radial

deformation at the tunnel crown is reached after almost 10 days, these deformations begin

to decrease over time. This behavior is related to the delayed onset of swelling at the

tunnel crown compared to the tunnel side. The highest radial deformations are observed

at an angle of almost 20 degrees, which can be attributed to the highly localized failure

in the clay shale, leading to also localized swelling in this region.

For the deformable support, a different deformation pattern is observed. Initially, an

ovalization of the tunnel lining due to stress anisotropy is evident after 1 day, with the

tunnel side deforming away from the tunnel center and the tunnel crown deforming toward

the tunnel center. This indicates that the swelling is initially fully absorbed by the grout,

which undergoes deformation, as will be discussed in more detail in the following.

Starting at around 10 days, deformation patterns similar to those in the rigid support

case emerge. This can be explained by the increasing swelling of the Opalinus clay shale,

which eventually causes the grout layer to transfer deformations to the tunnel lining.

Overall, both tunnel support systems show similar final deformations of the tunnel lining,

with the deformable case resulting in approximately 1mm higher deformation at the

tunnel crown and about 5mm lower deformation at the tunnel side compared to the rigid

support case.

To understand the deformation behavior of the entire tunnel support system, it is neces-

sary to analyze the deformation of the grouting layer. Since the grout is located between

the tunnel lining and the Opalinus clay shale, radial strains are the relevant quantity to

be examined. These are shown for both tunnel support systems at selected time instances

in Figure 5.81.

As illustrated in Figure 5.81, the rigid grout deforms negligibly, leading to the conclusion

that all swelling-induced deformations are transferred directly to the tunnel lining.

In contrast, the deformable grout shows progressive deformation over time, reaching radial

strains of approximately 25% to 35% at the end of the simulation at t = 1000 days.

The peaks in radial strain observed at 0, 17, 30 and 45 degrees correspond to the locations

of the imperfect elements, where stress and strain concentrations occur.
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Figure 5.80.: Radial displacements of tunnel linings in supported tunnels for initially

unsaturated conditions

Finally, the radial deformation of the tunnel wall must be examined to understand where

swelling is prevented, leading to the buildup of swelling pressure, and where swelling is

allowed, resulting in swelling-induced deformation. For that purpose, the increment of

radial displacements after tunnel excavation was analyzed at four time instances for both

tunnel support systems and is shown in Figure 5.82.

For the tunnel with rigid support, lower overall deformations are observed due to the high

rigidity of the support system. Figure 5.82 shows displacements of approximately -15mm

at the tunnel side and about 5mm at the tunnel crown. The deformation at the tunnel

crown away from the tunnel center can be explained by the deformation of the tunnel

lining. As previously established, the stiffness of the rigid tunnel support is so high that

the swelling acting at the tunnel side leads to an ovalization of the tunnel lining. As a
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Figure 5.81.: Radial strain of the annular gap grout in supported tunnels for initially

unsaturated conditions

result, the tunnel lining at the tunnel crown is pushed into the surrounding Opalinus clay

shale.

In contrast, the tunnel with deformable support exhibits significantly higher deformations,

with nearly -75mm at the tunnel side and approximately -35mm at the tunnel crown.

This leads to the conclusion that swelling-induced volumetric deformations are allowed in

this case, unlike in the tunnel with rigid support.

In addition to the deformations, the internal forces are a crucial factor for the design of

the tunnel support system. Therefore, the normal forces and bending moments in the

tunnel lining are evaluated in the following. First, the normal forces in the tunnel lining

are analyzed for both tunnel support systems at the end of the simulation (t = 1000

days), which are depicted in Figure 5.83.
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Figure 5.82.: Radial displacement of tunnel wall after excavation in supported tunnels for

initially unsaturated conditions

When comparing the rigid and deformable tunnel supports, it becomes evident that the

deformable support significantly reduces the normal forces. At the tunnel side, the ab-

solute values of the normal forces are reduced from -47MN/m to -4MN/m, and at the

tunnel crown from -24MN/m to -3MN/m. This corresponds to an approximate 90%

reduction, underlining the effectiveness of the deformable support.

In addition to the normal forces, the bending moments are another important parameter,

shown for both tunnel support systems in Figure 5.84. A comparison of the two systems

reveals that the absolute values of the bending moments are generally reduced when using

the deformable tunnel support.

For the deformable support, the deformation of the tunnel crown away from the tunnel

center results in negative bending moments, while at the tunnel side the opposite occurs.
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Figure 5.83.: Normal force in the linings of deformable and rigid tunnel support systems

for initially unsaturated conditions (t = 1000 days)

The larger deformation at the tunnel side leads to slightly higher bending moments in

this area compared to the tunnel crown.

In the case of the rigid tunnel support, the distribution of bending moments is more

difficult to interpret due to the more complex tunnel lining deformations observed in

Figure 5.80. Accordingly, the second derivative of the deformation, the curvature line,

which has a linear relationship with the bending moment, is also complex. Therefore, the

curvature line of the tunnel lining for the rigid support was evaluated and is presented in

Figure 5.85. As shown, a similar pattern to the previously determined bending moment

distribution emerges.
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Figure 5.84.: Bending moment in the linings of deformable and rigid tunnel support sys-

tems for initially unsaturated conditions (t = 1000 days)
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Figure 5.85.: Deflection of the lining of rigid tunnel support system for initially unsatu-

rated conditions (t = 1000 days)
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5.6.3. Evaluation of the tunnel support strategies and conclusion

After examining the two tunnel support strategies in terms of their influence on the EDZ

size as well as their overall behavior and interaction with the surrounding clay shale, a

final evaluation of the support systems is presented.

It was shown that the initial degree of saturation has a significant impact on the temporal

evolution of the EDZ. In the initially fully saturated case, the EDZ forms primarily during

excavation, whereas in the unsaturated case, it develops mainly during the saturation

phase, when wetting-induced softening occurs.

For both initial saturation conditions, the rigid tunnel support consistently results in the

smallest EDZ size among all investigated support strategies, with this effect being espe-

cially pronounced under initially unsaturated conditions. Furthermore, the rigid support

leads to the lowest deformations, as was expected. However, this comes at the cost of

high internal normal forces within the tunnel lining, requiring a considerable material

investment to achieve the necessary stiffness.

The deformable tunnel support, in contrast, exhibits greater deformation and a larger

EDZ than the rigid support. In the fully saturated case, the resulting EDZ is moderately

smaller than in the unsupported tunnel, while in the unsaturated case, the EDZ size

approaches that of the unsupported scenario. Despite this, the final lining deformations

are very similar for both support systems, with the greatest difference observed under

unsaturated conditions, where the deformable support yields 5mm lower deformations at

the tunnel side.

Of particular note is the compressibility of the deformable grout, which substantially

reduces the radial stresses transferred to the tunnel lining and thereby significantly lowers

the normal forces. This effect was especially evident in the unsaturated case and has the

potential to reduce the required material for the tunnel lining, offering both ecological and

economic advantages. However, to enable such optimization, the bending moments must

be carefully assessed. While they remain within a similar range for both initial saturation

conditions, a reduction in lining material could increase them and affect the structural

performance.

Overall, the deformable tunnel support represents a promising approach for mechanized

tunneling in swelling clay shales, particularly under partially saturated conditions.
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5.7. Modified convergence-confinement method

As concluded in the previous section, under initially saturated conditions, the tunnel

support has only a minor influence on the formation of the EDZ, since the EDZ devel-

ops primarily during tunnel excavation. Since the previous simulations assumed a linear

convergence-confinement curve during excavation, this approach represents a simplifica-

tion compared to real-world observations. In reality, surface settlement profiles along the

excavation direction often exhibit a distinct s-shape, which similarly translates into a s-

shaped convergence-confinement curve. Given the significant role excavation plays in the

development of the EDZ, it is essential to evaluate whether a more realistic convergence-

confinement curve impacts the EDZ size and characteristics, such as the mean permeabil-

ity.

This section, therefore, aims to refine the simulation by developing a more representative

convergence-confinement curve and assessing its effect on these aspects. Given the absence

of surface settlement data due to the reference tunnel’s considerable depth, due to the

high overburden preventing any measurable surface deformations, an alternative data

source must be identified. While a 3D tunnel excavation model could provide these

information, the lack of a 3D implementation of the Barcelona Basic Model (BBM) in the

finite element code Lagamine, in addition to the high computational cost of a fully coupled

3D simulation, renders this approach unfeasible. Instead, a 2D axisymmetric tunnel model

is developed. This model, while ensuring computational efficiency, is employed to extract

data along the tunnel excavation direction, which is subsequently used to construct the

convergence-confinement curve.

The following section introduces the 2D axisymmetric model of the tunnel excavation, in-

cluding its geometry, boundary conditions, and excavation strategy. To enable progressive

tunnel excavation in the axisymmetric model and to address computational instabilities

in the hydro-mechanically coupled simulation, it was necessary to use an internal force

reduction method. This method is validated by comparing selected model results with an

identical simulation in the finite element code Plaxis 2D, where a comparable reduction

method is already implemented.

Once validated, the longitudinal displacement profile (LDP) from the axisymmetric model

and the ground reaction curve (GRC) from the plane strain model are extracted and

subsequently used to construct an updated convergence-confinement curve. Lastly, a

comparison of the resulting EDZ obtained using the linear and the modified convergence-

confinement curves in the plane strain model is conducted.
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5.7.1. 2D axisymmetric model

As previously noted, an axisymmetric model is developed to maintain computational ef-

ficiency while simulating realistic tunnel advancement in 2D. This model provides radial

convergence of the tunnel wall as a function of the excavation progress, termed the lon-

gitudinal displacement profile (LDP) subsequently used in Section 5.7.3 to constructed a

modified convergence-confinement curve.

The 2D axisymmetric model has the dimensions of 100m x 70m, with mesh discretization

and boundary conditions highlighted in Figure 5.86a. The initial stresses are applied via

load conditions at the model boundaries, consistent with the approach used in the plane

strain model. The values of the initial stresses as well as the initial pore water pressure

vary between the individual simulations and are detailed for each model in the respective

sections, along with further explanations. The degrees of freedom for temperature and air

pressure in all model nodes are fixed at T = 20◦C and atmospheric pressure Pa = 100 kPa,

aligning with the conditions of the plane strain tunnel model.

The same constitutive models and parameters (see Table 3.5) as in the plane strain model,

described in Section 5.3, are applied here, with one exception: the second gradient model

could not be employed, as it is only implemented for 2D plane strain conditions in the

chosen finite element code Lagamine. Therefore, the MWAT 2D elements used for the

laboratory tests are applied for these simulations as well.

The progressive excavation process in the plane strain model was simulated by applying

an initial load inside the tunnel, corresponding to the initial stress level at the start

of the simulation. During excavation, this load was gradually reduced, following the

convergence-confinement method. In contrast, the axisymmetric model implements a

different approach, where the stepwise tunnel excavation process is represented in 16

individual excavation phases, where each phase involves deactivating a soil slice with a

radius of 7m and a thickness of 2m, as depicted in Figure 5.86b. Each excavation phase

is assumed to last 4.5 h, consistent with the duration used in the plane strain model.

Since mechanized tunneling involves gradual excavation, the internal forces of the ex-

cavated elements are gradually reduced to zero until they are fully deactivated during

excavation. This approach, also employed in other finite element codes such as Plaxis

2D, allows for a smoother simulation of tunnel excavation and addresses computational

stability issues that can arise from abrupt element deactivation. Since the precise imple-

mentation of this method in finite element codes like Plaxis is not publicly disclosed, the

following section benchmarks the implementation by directly comparing the Lagamine



5.7. Modified convergence-confinement method 239

(a) Full model (b) Magnified area around tunnel excavation

Figure 5.86.: Schematic illustration of the axisymmetric tunnel model

model with an identical Plaxis model. The benchmarking specifically evaluates the longi-

tudinal displacement profile (LDP) and the pore water pressure evolution during tunnel

excavation. It should be noted that the internal force reduction method was already im-

plemented in Lagamine. However, it needed to be adapted for use with the MWAT 2D

elements and constitutive laws employed in this study. As the implementation had not

been sufficiently validated and a full validation is out of scope of this thesis, it was decided

to specifically carry out the validation only for the use case required within the scope of

this work.

5.7.2. Validation of internal force reduction method

As previously mentioned, to enable a progressive tunnel excavation in the axisymmetric

model, the internal forces of each element within the excavation slice are reduced from

their current value to zero, representing complete deactivation, over a specified time span,

in this case 4.5 h.

To validate this approach, an identical axisymmetric model is also created in Plaxis 2D.

Initially, a purely mechanical scenario with an isotropic initial stress of σx = σy = 7MPa
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in conjunction with a linear elastic constitutive model is considered as the simplest case.

The used parameters of the linear elastic constitutive model are presented in Table 5.3.

Since the objective of the axisymmetric model is to determine tunnel convergence or

radial displacements over time or with tunnel advancement, the radial displacement of

the central node within the 6th excavation slice at the tunnel wall is evaluated throughout

the excavation process. The 6th excavation slice is selected to minimize the influence of

boundary effects on the results. This node is hereafter referred to as the reference node

and is highlighted in red in Figure 5.86b.

Figure 5.87 illustrates the results for both the Lagamine and Plaxis 2D models, showing

an almost identical model response. In this figure, the displacements ux are plotted over

time and as a function of the distance of the reference node to the tunnel (excavation)

face x.

The model complexity is progressively increased by transitioning from an initial isotropic

stress state (σx = σy = 7MPa) to an initial anisotropic stress state (σx = 14MPa,

σy = 7MPa). Additionally, the model evolves from a purely mechanical approach, where

pore water pressure is not considered, to a hydro-mechanically coupled scenario that

incorporates the Van Genuchten soil-water characteristic curve (SWCC). The initial pore

water pressure is set to match that of the plane strain tunnel model, with pw,initial =

2MPa. Regarding the constitutive model, the complexity moves from linear elasticity to

an elasto-plastic framework, specifically employing the Mohr-Coulomb model, with the

corresponding parameters presented in Table 5.4.

It should be noted that the Barcelona Basic Model (BBM) implementation in Plaxis differs

from that in the Lagamine finite element code. For instance, the Plaxis implementation

does not incorporate cohesion, which is essential for modeling overconsolidated clay rocks

such as Opalinus clay shale. Therefore, the Mohr-Coulomb model is selected for validation

purposes, while the BBM is used in the final simulations.

Figure 5.88 presents the longitudinal displacement profile (LDP) obtained from both

Lagamine and Plaxis models, and Figure 5.89 illustrates the development of pore water

pressure over time or with TBM advancement. For the LDP, the radial displacements in

both models are almost identical. Regarding pore water pressure, both models demon-

strate an initial increase prior to excavation, aligning with in-situ observations from tun-

neling in London clay (Wan et al., 2019) and overcoring experiments in Opalinus clay

(Khaledi et al., 2021). During excavation, the pore water pressure drops due to unload-

ing around the tunnel. In low-permeability Opalinus clay, this unloading occurs nearly

undrained, leading to the development of negative pore pressures.
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The Plaxis results indicate slightly higher negative pore water pressures post-excavation.

However, the outcomes are in a generally good agreement, validating the internal force

reduction method applied.

Table 5.3.: Parameters of the linear elastic constitutive model

Parameter Symbol Unit Value

Young’s modulus E GPa 5

Poisson’s ratio ν - 0.3

Table 5.4.: Parameters of the Mohr-Coulomb model

Parameter Symbol Unit Value

Young’s modulus E GPa 5

Poisson’s ratio ν - 0.3

Friction angle φ degree 35

Cohesion c MPa 1

Dilatancy angle ψ degree 5
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Figure 5.87.: Comparison of longitudinal displacement profile (LDP) from axisymmetric

models in Lagamine and Plaxis 2D using linear elastic constitutive model
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Figure 5.88.: Comparison of longitudinal displacement profile (LDP) from axisymmetric

models in Lagamine and Plaxis 2D using Mohr-Coulomb constitutive model
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Figure 5.89.: Comparison of temporal evolution of pore water pressure from axisymmetric

models in Lagamine and Plaxis 2D using Mohr Coulomb constitutive model

5.7.3. Construction of the convergence-confinement curve

As explained in Section 2.3.2.1, the longitudinal displacement profile (LDP) and the

ground reaction curve (GRC) are used to construct the deconfinement ratio as a function of

tunnel advancement, hereafter referred to as the convergence-confinement curve. However,

a remaining limitation of the axisymmetric model is the absence of an anisotropic stress

state around the tunnel wall, as was used in the plane strain model, where the initial

stress state was set to 14MPa vertical and 7MPa horizontal. It should be emphasized
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here that, although an anisotropic stress state can be assumed in the axisymmetric model,

σx remains constant along the entire tunnel wall due to the position of the symmetry axis.

Consequently, two initial isotropic stress states, σx = σy = 14MPa and σx = σy = 7MPa

are considered in both the axisymmetric model (to obtain the LDP) and the plane strain

model (to obtain the GRC). The objective is, first, to analyze the extent to which the

initial stress state influences the resulting convergence-confinement curve and, second,

to identify an appropriate convergence-confinement curve for the given anisotropic stress

condition as considered in the plane strain model.

During simulations with the axisymmetric model and the Barcelona Basic Model (BBM)

as the constitutive model, several numerical instabilities are observed. These instabilities

stem from the different parameters compared to the Mohr-Coulomb model leading to more

deformation and pore water pressure generation. To enhance computational stability, the

pore water pressure is controlled at every node within the slice currently being excavated.

A python script is developed to facilitate this: it stores the pore water pressure of each

node in the upcoming excavation slice at the end of the current slice’s excavation, and then,

during excavation, linearly decreases the pore water pressure from this stored value to

atmospheric pressure (100 kPa). By controlling the pore water pressure during excavation,

all previously observed numerical instabilities were resolved.

For both initial stress states, radial displacements and pore water pressures at the reference

node are extracted from the axisymmetric model and presented in Figures 5.90 and 5.91,

respectively. The only difference between the two models is the initial stress state. The

model with 14MPa initial stress exhibits greater displacements and a more pronounced

pore water pressure peak compared to the 7MPa model. This behavior results from the

higher initial stresses leading to a greater increment of stress reduction during tunnel

excavation. With all other boundary conditions remaining the same, this larger stress

reduction increment inevitably results in greater deformation.

No significant differences are observed in the LDP between the 7MPa and 14MPa models

throughout most of the excavation process. However, towards the end of the excavation,

as shown in Figure 5.90, the differences become more pronounced. This delay is attributed

to the low permeability of the material. Stress changes are initially accommodated by the

buildup of pore water pressure, which delays the transfer of these changes in the form of

effective stress to the solid skeleton. This also explains why the pore water pressure peak

is higher in the model with an initial stress of 14MPa compared to the 7MPa model, as

shown in Figure 5.91.



244 5. Numerical modelling of mechanized tunnel excavation

−12 −8 −4 0 4 8 12 16
Distance to tunnel face x [m]

0 10 20 30 40 50 60 70 80
Time t [h]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00
D
is
p
la
ce
m
en
t
u
x
[m

] 7MPa

14MPa

Figure 5.90.: Longitudinal displacement profile (LDP) from axisymmetric model using

Barcelona Basic Model with both isotropic initial stresses

Nonetheless, the trends in both models are comparable and almost independent of the

initial stress state. These trends include the characteristic s-shaped settlement pattern

that develops as the tunnel excavation progresses, as well as the buildup of a pore water

pressure peak ahead of the TBM, which rapidly dissipates upon reaching the excavation

front. The reduction of pore water pressure to atmospheric pressure (100 kPa) is im-

posed during the excavation process, as in the plane strain model. This pressure is then

maintained at a constant value post-excavation. Consequently, no negative pore water

pressures are observed, in contrast to the results obtained with the Mohr-Coulomb model

in the previous section. The control of pore water pressure in the excavated slices is

necessary to ensure stable convergence of the numerical model utilizing the BBM as the

constitutive model.

To construct the evolution of the deconfinement ratio (1 − λ) with tunnel advancement,

radial displacements as a function of the deconfinement ratio are required. For this, the

plane strain model introduced in Section 5.3 is employed with two modifications.

First, the initial stress is adjusted to σx = σy = 14MPa and σx = σy = 7MPa respectively

to match the axisymmetric model’s conditions. Second, the local second gradient model

is omitted to enable a direct comparison with the axisymmetric model, where this model

is unavailable. Due to the isotropic stress state, radial displacements are uniform at every

point along the tunnel wall. The radial displacements are extracted at the node located

at the tunnel crown and the resulting ground reaction curves are shown in Figure 5.92 for

both initial stress states.
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Figure 5.91.: Temporal evolution of pore water pressure from axisymmetric model using

Barcelona Basic Model with both isotropic initial stresses

Similar to the axisymmetric model, the 14MPa isotropic initial stress case results in

higher deformations compared to the 7MPa stress case. As seen in Figure 5.92, the

relationship between deconfinement ratio and radial displacement appears linear for the

model with an initial stress state of 7MPa. However, in the 14MPa stress scenario, this

linear relationship holds only until a deconfinement ratio of about 1 − λ = 0.4, below

which the radial displacements increase more sharply. This behavior suggests the onset

of plastic failure at lower deconfinement ratios for the 14MPa initial stress model.

To construct the curve of the deconfinement ratio over time or as a function of tunnel

advancement, each point on the LDP curve for the initial stress states of 7MPa and

14MPa is used to interpolate a deconfinement ratio that corresponds to the same radial

deformation observed on the GRC, following the approach illustrated in Figure 2.16.

Due to the low permeability and rapid excavation, the increase in pore water pressure prior

to excavation has minimal impact on the results, as the process occurs almost undrained.

Therefore, the pore water pressure increase due to tunnel advancement is disregarded,

meaning the peak effect is neglected. Instead, the reduction from the initial pore water

pressure pw,0 = 2MPa to the final pore water pressure equal to the atmospheric pressure is

assumed to be linear, as depicted in Figure 5.91 (gray curve). The resulting deconfinement

ratios, derived from pw,0/pw, along with the deconfinement ratio for the two initial stress

states, are shown in Figure 5.93. The appendix C presents a comparison of the resulting

EDZ areas and mean permeability for different approaches to the pore water pressure

profile prior to excavation.
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Figure 5.92.: Ground reaction curve (GRC) from plane strain model using Barcelona Basic

Model for both isotropic initial stress states

As seen in Figure 5.93, the two deconfinement ratio curves for the different initial stress

states exhibit minimal differences. From the beginning until approximately x = −4m

(equivalent to two tunnel segments) before the TBM reaches the examined tunnel segment,

the curves are nearly identical. Minor deviations occur between x = −4m and x = +6m,

though they disappear further along the curve. Thus, it can be concluded that the

initial stress state has only a minor impact on the curve of the deconfinement ratio.

Consequently, an average of the two curves is computed and applied in the subsequent

2D plane strain tunnel model calculations using the local second gradient model and

anisotropic initial stress conditions. It should be noted at this point that the resulting

temporal evolution of the deconfinement ratio during tunnel excavation does not reduce to

zero, as was the case in previous simulations assuming a linear convergence-confinement

curve. Instead, a small residual value of 0.034 remains.
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Figure 5.93.: Resulting temporal evolution of the deconfinement ratios for pore water

pressure and both isotropic initial stress states

5.7.4. Resulting excavation damaged zone using modified

convergence-confinement method

Following the previous section, where the modified convergence-confinement curve was

constructed using an axisymmetric model, an average of the two convergence-confinement

curves resulting from two different initial stress states (7MPa and 14MPa) is computed.

This averaged curve is then applied as the boundary condition for the tunnel wall in the

plane strain model with an anisotropic initial stress state of σx = 7MPa and σy = 14MPa.

The analysis first focuses on the temporal evolution of the resulting excavation damaged

zone (EDZ) and subsequently compares these findings with the results from the model

that employed a linear convergence-confinement curve, as utilized in earlier sections, such

as the parameter study.

For the EDZ analysis, the temporal evolution of total deviatoric strains is first examined,

as shown for selected time steps in Figure 5.94. As seen in this figure, no deviatoric strains

appear until the excavation front (x = 0m and t = 1.5 days) is reached. When the TBM

reaches the reference node, two of the four imperfect elements show deviatoric strains,

though no shear strain localization is yet evident as depicted in Figure 5.94c.

As excavation progresses, initial shear bands begin to form (see Figure 5.94d), and by the

end of excavation at t = 3.3 days (Figure 5.94e), a distinct EDZ has developed.

In addition to the time steps during excavation (Figures 5.94a to 5.94e), further post-

excavation time steps (Figures 5.94f to 5.94h), as examined in Section 5.4, are also eval-
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uated. It is observed that the EDZ continues to develop over time, with quantification to

be conducted in the subsequent analysis.

Total deviatoric strain [-]

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 9.001E+04   1.00    

DELT= 1.259E−02 

      X  0.100E+06

TMIN = 3.441E−04

TMAX = 4.008E−03

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(a) t = 25h

x = −4m

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 1.080E+05   1.00    

DELT= 1.259E−02 

      X  0.100E+06

TMIN = 4.519E−04

TMAX = 7.446E−03

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(b) t = 30h

x = −2m

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 1.260E+05   1.00    

DELT= 1.259E−02 

      X  0.100E+05

TMIN = 1.022E−03

TMAX = 3.263E−02

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(c) t = 1.5 days

x = 0m

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 1.980E+05   1.00    

DELT= 1.259E−02 

      X  0.100E+05

TMIN = 2.084E−03

TMAX = 8.853E−02

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(d) t = 2.3 days

x = 8m

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 2.880E+05   1.00    

DELT= 1.259E−02 

      X  0.100E+04

TMIN = 1.764E−03

TMAX = 0.129    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(e) t = 3.3 days

x = 18m

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 4.320E+06   1.00    

DELT= 1.259E−02 

      X  0.100E+04

TMIN = 1.609E−03

TMAX = 0.149    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(f) 5 days

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 8.640E+06   1.00    

DELT= 1.259E−02 

      X  0.100E+04

TMIN = 1.590E−03

TMAX = 0.154    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(g) 100 days

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 8.640E+07   1.00    

DELT= 1.259E−02 

      X  0.100E+04

TMIN = 1.540E−03

TMAX = 0.164    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(h) 1000 days

X

Y

<     0

     12

     25

     37

     50

     62

     75

     88

    100

    113

    125

>   138

* 1.000E−03

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF E−EQ

TIME      DMULCUM 

 9.001E+04   1.00    

DELT= 1.259E−02 

      X  0.100E+06

TMIN = 3.441E−04

TMAX = 4.008E−03

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

Figure 5.94.: Development of total deviatoric strain within numerical model of unsup-

ported tunnel employing modified convergence-confinement curve
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Additionally, the temporal evolution of plastic points is analyzed to gain a better under-

standing of the plastic zone, which partially overlaps with the EDZ. The plastic points for

the selected time steps are shown in Figure 5.95. Unlike the deviatoric strains, plasticity

is observed as early as 25 h, or approximately 4m distance from the reference node to the

excavation front (x = −4m), where two of the four imperfect elements reached plasticity

(see Figure 5.95a).

Over time, the plastic zone expands, reaching its maximum at the end of excavation

(t = 3.3 days) illustrated in Figure 5.95e. As previously discussed in Section 5.4, the

plastic zone is notably larger than the area where shear bands appear. This was attributed

to the excess pore water pressure in Section 5.4, which is also the case here. From the end

of excavation (t = 3.3 days) to t = 5 days post-excavation, the plastic zone decreases (see

Figures 5.95e and 5.95f), corresponding to the reduction in pore water pressure, which had

increased during excavation due to tunnel ovalization, a result of the anisotropic initial

stress state. Between t = 5 days and t = 1000 days, the plastic zone remains nearly

constant (see Figures 5.95f to 5.95h).

Although the plastic zone is a significant result of the calculation it does not directly

equate to the EDZ, as plastic deformations may increase permeability, but not to the

same extent as the permeability increase associated with shear strain localization or shear

bands, which can indicate the presence of fractures or other damage. Therefore, in the

following, the permeability ratio is again employed to quantify the extent of the EDZ.

Figure 5.96 illustrates the temporal evolution of the permeability ratio. Similar to the

deviatoric strains, changes in permeability begin at t = 1.5 days, coinciding with reaching

the TBM face (x = 0m), where permeability increases by approximately ∆kw = 10 in

three of the four imperfect elements, as can be seen in Figure 5.96c. In the subsequent time

step, the formation of the EDZ is significantly progressed (Figure 5.96d) and continues

to increase further, as depicted in Figures 5.96e through 5.96h. Within the shear bands,

a peak permeability increase of approximately ∆kw = 100 is observed.

Since permeability is coupled to deviatoric strains in this simulation, the permeability ratio

behaves analogously to the shear band development (see Figure 5.94). This relationship

highlights the direct impact of shear band formation on permeability increase, with the

largest changes occurring along these zones of concentrated strain.



250 5. Numerical modelling of mechanized tunnel excavation

Plastic points

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 9.001E+04   1.00    

MAX+   1.00      981

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(a) t = 25h

x = −4m

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 1.080E+05   1.00    

MAX+   1.00      781

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(b) t = 30h

x = −2m

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 1.260E+05   1.00    

MAX+   1.00      601

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(c) t = 1.5 days

x = 0m

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 1.980E+05   1.00    

MAX+   1.00      581

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(d) t = 2.3 days

x = 8m

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 2.880E+05   1.00    

MAX+   1.00      541

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(e) t = 3.3 days

x = 18m

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 4.320E+06   1.00    

MAX+   1.00      582

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(f) 5 days

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 8.640E+06   1.00    

MAX+   1.00      562

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(g) 100 days

X

Y

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

MAP OF VAR5

TIME      DMULCUM 

 8.640E+07   1.00    

MAX+   1.00      581

EXP   1.00

  5.00    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−5−,−6−,−7−,−8−,−9−,−10−,−11−

−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(h) 1000 days

Figure 5.95.: Development of plastic points within numerical model of unsupported tunnel

employing modified convergence-confinement curve
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(f) 5 days
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(g) 100 days

X

Y

<     0

     13

     26

     39

     53

     66

     79

     92

    106

    119

    132

>   145

  Belchen finer mesh no lining schoemp3                               belchen_bbm_fine_nolining_CCM

CURVE OF VR89

TIME      DMULCUM 

 8.640E+07   1.00    

DELT=  13.3     

      X   1.00    

TMIN =  1.00    

TMAX =  109.    

IN THE INITIAL STRUCTURE

PLANE VIEW X Y

         MIN        MAX

X      0.000    200.000

Y      0.000    200.000

Z      0.000      0.000

ELEMENTS SELECTION

−3−,−4−,−5−,−6−,−7−,−8−,−9−,−10−

−11−,−12−

ELEMENTS DRESSING

ALL

DESFIN 9.6 04/11/24

(h) 1000 days
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Figure 5.96.: Development of permeability ratio within numerical model of unsupported

tunnel employing modified convergence-confinement curve
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Based on the permeability ratio and a permeability ratio threshold of 5, as selected in

Section 5.4.6, both the extent of the EDZ and the mean permeability ratio within the

EDZ are determined across the entire calculation period, as shown in Figures 5.97 and

5.98.

The EDZ begins to form at t = 1.5 days and expands steadily in size with increasing

time and TBM advancement, as illustrated in Figure 5.97. The most significant increase

occurs between t = 1.5 days (AEDZ = 0m2) and the end of the excavation at t = 3.3 days

(AEDZ = 13.20m2), where t = 1.5 days indicated the time when the TBM arrives at the

reference point. In the model with linear convergence-confinement curve, the main growth

was also observed during the excavation process, where a greater EDZ size AEDZ ≈ 17m2

was determined.

Between the end of the excavation and t = 5 days, the EDZ size increases only slightly.

However, a noticeable secondary increase occurs between t = 5 days and t = 100 days.

This can be explained by the dissipation of excess pore water pressure in the formation

at the tunnel side, which leads to an increase in effective stresses. This rise in effective

stresses, in turn, promotes further softening and strain localization, ultimately leading to

an increase in the EDZ area.

Similar to the findings in Section 5.4, a maximum value is approached towards the end of

the simulation (t = 1000 days), with the EDZ size stabilizing at AEDZ = 16.19m2.

Similar to the increase in EDZ area, the mean permeability ratio also rises from approxi-

mately ∆kw = 1 at t = 1.5 days to around ∆kw = 25 at t = 3.3 days, marking the end of

the excavation (see Figure 5.98). Afterwards, the mean permeability ratio continues to in-

crease, though not at the same rate as the EDZ area. A closer examination of Figure 5.98

reveals a slight decrease in mean permeability ratio between 5 and 100 days, contrasting

with the increase in the EDZ area. This discrepancy can be attributed to the expansion

of the EDZ, which now includes regions that do not experience remarkable permeability

increases (e.g., areas between shear bands). Therefore, an increase in EDZ area does not

necessarily result in a higher mean permeability ratio.

In addition, the temporal progression of the identified EDZ outer boundary is illustrated

in Figure 5.99. Also in this representation it is clearly evident that the largest increase in

the EDZ area occurs within the first 3.3 days, which corresponds to the tunnel excavation.

After the end of the excavation, only a marginal increase is observed.

Following the analysis of the temporal progression of the EDZ using the model with the

modified convergence-confinement curve, this model is compared with the model employ-



5.7. Modified convergence-confinement method 253

10−2 10−1 100 101 102 103 104

Time t [h]

0

5

10

15

20

A
re
a
E
D
Z
A

E
D
Z
[m

2
]

end of excavation

Figure 5.97.: Temporal evolution of the EDZ area for the numerical model of unsupported

tunnel employing modified convergence-confinement curve

ing the linear convergence-confinement curve used in the parameter study. The compar-

ison is conducted at t = 1000 days after the start of the excavation, as the EDZ has

reached its maximum extent by this time and is expected to stabilize without further

significant increase. For this purpose, the three key parameters, deviatoric strains, plastic

points, and permeability ratio, are presented side by side in Figure 5.100.

Considering the deviatoric strains shown in Figures 5.100a and 5.100d, it is evident that

the extent of the EDZ is larger in the model with the linear convergence-confinement curve

compared to the one with the modified convergence-confinement curve. This difference is

also reflected in the permeability ratio. Although the distribution of plastic points varies

between the models, the distinction is less pronounced.

For a quantitative comparison, the EDZ area and the mean permeability are calculated

for both models and displayed in Figure 5.101, along with the outer boundaries of the

EDZ. It becomes apparent that the EDZ size is reduced by approximately 2m2, or 12%,

in the model incorporating the modified convergence-confinement curve. Additionally,

the permeability is also lower by 0.5E-17m2. A primary reason for this difference is that

in the model with the linear convergence-confinement curve, the tunnel support pressure

was unloaded to a deconfinement ratio of 0, while the modified convergence-confinement

curve only reduced the deconfinement ratio to 0.034.
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Figure 5.98.: Temporal evolution of mean permeability ratio within the EDZ for the nu-

merical model of unsupported tunnel employing modified convergence-confinement curve
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Figure 5.99.: Temporal evolution of EDZ extension for the numerical model of unsupported

tunnel employing modified convergence-confinement curve
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(a) Deviatoric strain
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(b) Permeability ratio
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(c) Plastic points
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(d) Deviatoric strain
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(e) Permeability ratio
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(f) Plastic points

Figure 5.100.: Comparison of key results between the modified and linear convergence-

confinement models (t = 1000 days)
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Linear CCM: AEDZ≈18.48m2, k̄w,EDZ≈5.94E-17m2

Modified CCM:AEDZ≈16.19m2, k̄w,EDZ≈5.26E-17m2
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Figure 5.101.: Comparison of the EDZ extend for the modified and linear convergence-

confinement models (t = 1000 days)
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5.8. Conclusion

This chapter began with an explanation of the numerical models and the simulation

method used for tunnel excavation. Subsequently, various metrics were evaluated for their

suitability in systematically assessing the size of the EDZ. Although plastic points initially

appeared promising, the plastic zone was larger than the region where shear bands occur.

This discrepancy was due to an additional zone influenced by pore water pressure changes,

which also induced plasticity. Therefore, the permeability ratio was ultimately considered

as the metric for systematically evaluating the EDZ size. Determining a threshold value

was necessary to distinguish between the EDZ and the surrounding area.

The next question addressed was the timing of the EDZ evaluation. It was found that

the majority of the EDZ forms during excavation but that the EDZ continues to grow

afterward. To analyze the most unfavorable case, it was decided to evaluate the EDZ at

the end of the simulation, where the greatest EDZ size was observed.

A parameter study was then conducted on the unsupported tunnel. It was shown that

the number and strength of imperfect elements had little effect on the EDZ size. As in

the previous chapter, a sufficiently small element size was required to distinguish between

shear bands and areas adjacent to them. Regarding the second gradient elastic modulus,

it was confirmed, as previously observed, that it influences shear band thickness, but

ultimately not EDZ size. Finally, the tunnel diameter was analyzed, revealing that the

square of the tunnel diameter has a linear relationship with the EDZ size.

After analyzing the unsupported tunnel in the parameter study, two tunnel support strate-

gies were investigated: a rigid support and a deformable support, each under different

initial saturation conditions. In both cases, the rigid support resulted in the smallest

EDZ size. For initially saturated conditions, the deformable support led to a slightly

larger EDZ, while under initially unsaturated conditions, the EDZ size was similar to

that of the unsupported tunnel. A detailed assessment of both support strategies fol-

lowed, focusing on the deformations of individual components and their interaction with

the surrounding Opalinus clay shale. The rigid support showed minimal deformation but

caused significantly higher stresses. In contrast, the deformable support, due to its com-

pressible grout layer, accommodated swelling pressures through deformation. This effect

was particularly visible under initially unsaturated conditions. These findings highlight

the deformable support as a promising alternative to rigid support systems, especially in

cases where significant swelling is expected.



258 5. Numerical modelling of mechanized tunnel excavation

Another key finding was that the tunnel support has limited influence on the EDZ size,

for initially saturated conditions, as the EDZ primarily grows during tunnel excavation.

Consequently, the linear convergence-confinement curve approach was compared with a

modified approach to investigate the impact of a more realistic convergence-confinement

curve on EDZ size. For this purpose, an axisymmetric tunnel model was developed to pro-

vide information about the excavation process along the excavation direction. Comparing

the linear convergence-confinement curve with the modified approach revealed a smaller

EDZ size in the latter case. This underscores the importance of accurately modeling the

mechanized tunnel excavation process, as it has an influence on the development of the

EDZ.



6. Conclusions and recommendations

6.1. Summary

This study analyzed the hydro-mechanical behavior of clay shales during mechanized

tunneling, with a focus on swelling clay shale formations. The research was motivated by

a central question posed by the Collaborative Research Center 837 ”Interaction Modeling

in Mechanized Tunneling” which aimed to address the challenges of mechanized tunnel

excavation through such geotechnically complex formations. The central question of this

research was: How could a mechanized tunnel drive be successfully realized through

swelling clay shale formations, which presented unique challenges due to their hydro-

mechanical properties? To answer this, the study required a comprehensive analysis of

the coupled hydro-mechanical behavior of the material and the development of realistic

models to simulate tunneling processes in these formations.

Given the complexity of swelling clays, the research employed both experimental and

numerical approaches to understand the interactions between the soil and tunnel con-

struction processes. However, only the numerical investigations were conducted as part

of this thesis.

The first step was to derive the hydro-mechanical properties of Opalinus clay, a repre-

sentative clay shale formation, through an extensive literature review and experimental

investigations conducted at Ruhr University Bochum (RUB). The focus was on deter-

mining the mechanical and hydraulic properties that govern the behavior of swelling clay

shales during tunneling.

The mechanical properties were quantified based on laboratory tests, including oedometer

and triaxial tests, conducted outside the scope of this thesis. These tests enabled the

calibration of key parameters such as compressibility, shear strength, and stress-strain

behavior under different loading conditions, providing insights into the soil’s response to

mechanical forces during tunneling operations. Similarly, the hydraulic properties were

determined through permeability tests and water retention curve measurements, offering

259
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essential data on the clay shale’s ability to retain and transmit water. As these tests were

not performed as part of this thesis, detailed test protocols and methodologies are not

included.

The hydro-mechanical properties obtained from these laboratory experiments were used

to simulate swelling tests under tunneling-relevant boundary conditions. One of the key

achievements of this study was the successful calibration of a single parameter set, that

could represent the swelling behavior under all investigated boundary conditions.

Shear strain localization in Opalinus clay was subsequently studied using numerical models

of a biaxial test featuring well-defined boundary conditions. Stress paths were analyzed to

understand their impact on strain localization, supported by a parameter study of critical

model parameters. Furthermore, methods for predicting the increased permeability of the

excavation damaged zone (EDZ) were examined in detail.

These findings were applied to tunnel-scale modeling, focusing on the formation and

evolution of the EDZ during mechanized tunnel excavation. A case study illustrated the

application of numerical models to simulate excavation processes. The influence of various

model parameters and tunnel support systems on the EDZ was systematically evaluated,

and a modified modeling approach for tunnel excavation was introduced and assessed for

its impact on EDZ development.

6.2. Conclusions

In this thesis, various aspects of the hydro-mechanical behavior of clay shales during

mechanized tunnel excavation were investigated, with the focus varying depending on the

chapter. The main findings of this work are listed chronologically as follows:

• During the parameter calibration, the Barcelona Basic Model effectively replicated

the mechanical behavior of Opalinus clay shale. For hydraulic modeling, the van

Genuchten model successfully characterized the water retention properties, while a

modified Kozeny-Carman model accurately captured the porosity-dependent per-

meability.

• Modeling the swelling tests demonstrated the necessity of precise knowledge of the

boundary conditions, particularly deformations, as minor deformations significantly

influence swelling pressure. Utilizing the Barcelona Basic Model for expansive soils

enabled the successful simulation of all conducted swelling tests under varying de-

formation boundary conditions with a single parameter set.



6.2. Conclusions 261

• Laboratory data from biaxial tests on Opalinus clay revealed pronounced brittle

behavior. Simulations using the Barcelona Basic Model with a local second gradient

extension provided reasonable agreement, offering deeper insights and highlighting

highly localized shear failure.

• Detailed analyses of conditions leading to shear strain localization in the Barcelona

Basic Model revealed two critical stress path scenarios: one associated with mechan-

ical softening in highly overconsolidated clay when the stress path enters plasticity,

and another where an initially unsaturated soil undergoes saturation, causing hy-

draulic softening.

• For the local second gradient model, a sufficiently small element size was determined

to be essential to adequately distinguish between regions inside and outside the

shear band. Additionally, the second gradient parameter, D, was found to control

the shear band thickness by acting as an internal length scale, facilitating mesh-

independent localization.

• Among various approaches to linking permeability with shear strain localization,

the strategy of correlating permeability to equivalent deviatoric strains produced

the most reliable results and was exclusively adopted for the tunnel model.

• The permeability ratio, as defined in this thesis, represents the ratio between the

increased permeability within the Excavation Damaged Zone (EDZ) and the ini-

tial permeability of the rock mass. This ratio proved to be a robust indicator for

systematically determining the size of the EDZ. In contrast, relying solely on the

plastic zone tended to overestimate the EDZ size due to the inclusion of regions

where plasticity arises solely from pore water pressure changes.

• A parameter study using the tunnel model indicated that the incorporated material

imperfections, intended to evoke shear strain localization, influenced the position of

the shear bands but had no measurable effect on the EDZ size. Among the variables

analyzed, tunnel diameter emerged as the most significant factor influencing the

EDZ size, which was found to correlate approximately with the square of the tunnel

diameter..

• Comparative analysis of two potential tunnel support systems revealed that rigid

supports minimized deformation and EDZ size while inducing the highest normal

forces in the tunnel lining. In contrast, deformable supports exhibited slightly

greater EDZ sizes but similar lining deformations, while decreasing normal forces

in the tunnel lining. Both systems were effective in limiting EDZ expansion com-
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pared to an unsupported tunnel. However, it was observed that most EDZ growth

occurs during excavation, limiting the overall impact of tunnel support systems in

this regard.

• Incorporating results from a two-dimensional axisymmetric model enabled a more

realistic simulation of tunnel excavation. This approach resulted in a smaller pre-

dicted EDZ, underscoring the importance of accurately modeling the excavation

process.

6.3. Outlook and recommendations for further studies

Although this thesis has examined the hydro-mechanical behavior of clay shales during

tunneling from various perspectives, this research field still offers opportunities for further

studies. The following are identified by the author as potentially valuable areas for future

research:

• Although a parameter set for Opalinus clay was derived using the experiments con-

ducted at RUB, the intermediate states during saturation or, more generally, during

changes in suction could not be fully validated. To address this, it would be benefi-

cial to repeat the laboratory experiments under various constant suction conditions.

This approach would enable better modeling of the transition from unsaturated to

saturated states and provide valuable insights for a more detailed understanding of

soil behavior.

• Opalinus clay, as well as other sedimentary clay shales, exhibit strongly anisotropic

behavior, particularly with regard to swelling, as demonstrated in this thesis. This

anisotropic behavior cannot be adequately captured using the Barcelona Basic

Model (BBM). Therefore, a potential avenue for further study could involve ex-

tending the BBM to account for anisotropy.

• In this study, only two-dimensional finite element calculations were performed, as

the constitutive models used are implemented exclusively in 2D in the chosen soft-

ware. However, tunnel excavation is inherently a three-dimensional problem. To

examine water transport along the tunnel or potential cross-connections between

tunnel tubes in more detail, a 3D simulation is required. It is therefore proposed

to transfer the EDZ sizes and mean permeability determined in this work into a 3D

model and simulate without additional regularization techniques. This approach
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would significantly reduce the computational time of the 3D model while maintain-

ing a realistic representation of the EDZ. To implement this, either the BBM would

need to be extended to three dimensions within Lagamine, or an alternative finite

element framework should be used that already includes a three-dimensional im-

plementation of the BBM or another constitutive model suitable for capturing the

hydro-mechanical behavior of Opalinus clay shale.

• The derivation of the convergence-confinement curve using an axisymmetric model,

as conduced in this study, could also be further refined. It is proposed to validate

this approach using real surface settlement data from a shallow tunnel. Additionally,

the scope of the axisymmetric model could be expanded by incorporating both face

pressure and grouting pressure into the analysis.

• In this study, two potential tunnel support strategies were examined under differ-

ent uniform initial saturation conditions. A possible extension of this work could

explore non-uniform initial conditions, such as a tunnel cross-section that includes

vertical, horizontal, or inclined layers that are partially unsaturated. This would

allow for an analysis of tunnel support performance under locally acting swelling

pressures. Furthermore, future studies could focus on optimizing tunnel support

systems to identify the most effective tunnel design for a range of geological and

hydro-mechanical scenarios.

• Lastly, temperature effects could be incorporated into the tunnel simulation, as

it is well established in the literature that temperature significantly influences the

swelling behavior of clay shales. Therefore, a further study could investigate the

heat generated during the hydration of the concrete lining or examine seasonal

temperature fluctuations and their impact on the behavior of the tunnel support

system and the surrounding geomaterial.
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Anagnostou, G. (1993), ‘A model for swelling rock in tunnelling’, Rock Mechanics and

Rock Engineering 26(4), 307–331.

265



266 Bibliography

Anagnostou, G. (2007), The one-step solution of the advancing tunnel heading problem,

in ‘EURO:TUN 2007 : ECCOMAS Thematic Conference on Computational Methods

in Tunneling’, Vienna, Austria.

Anagnostou, G., Pimentel, E. and Serafeimidis, K. (2010), ‘Swelling of sulphatic clay-

stones – some fundamental questions and their practical relevance’, Geomechanics and

Tunnelling 3(5), 567–572.

Antonioli, B. (2018), Mechanical Properties of Gap Grout Installed in the TBM-excavated

New Belchen A2 Highway Tunnel, B.Sc. Thesis, Department of Earth Sciences, ETH

Zurich.

Arson, C. and Gatmiri, B. (2012), ‘Thermo-hydro-mechanical modeling of damage in un-

saturated porous media: Theoretical framework and numerical study of the EDZ’, In-

ternational Journal for Numerical and Analytical Methods in Geomechanics 36(3), 272–

306.

Arthur, J. R. F., Dunstan, T., Al-Ani, Q. A. J. L. and Assadi, A. (1977), ‘Plastic defor-

mation and failure in granular media’, Géotechnique 27(1), 53–74.
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Collin, F., Chambon, R. and Charlier, R. (2006), ‘A finite element method for poro

mechanical modelling of geotechnical problems using local second gradient models’,

International Journal for Numerical Methods in Engineering 65(11), 1749–1772.

Collin, F., Levasseur, S. and Chambon, R. (2009), ‘Numerical post failure methods in

multiphysical problems’, European Journal of Environmental and Civil Engineering

13(7-8), 983–1004.
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A. Appendix A

In this appendix, the reversible wetting-drying line κs for volume constant conditions is

derived. During volumetric swelling the elastic volumetric strains due to suction change

dϵev,s are prevented and therefore a swelling pressure is build up. It is assumed that

dϵev,p = dϵev,s. By knowing this pressure change and the slope of the unloading-reloading

line κ the reversible wetting-drying line κs can be derived as:

dϵv = dϵev,p + dϵev,s (A.1)

κ · dp
p

− κs ·
ds

s+ uatm
| x = s+ uatm (A.2)

κ ·
∫ pB

pA

1

p
dp− κs ·

∫ sB

sA

1

x
dx (A.3)

κ · [ln(p)]pApB − κs · [ln(s+ uatm)]
sA
sB

(A.4)

κ · ln
(
pB
pA

)
− κs · ln

(
sB + uatm
sA + uatm

)
(A.5)

κs = κ · ln(pB)− ln(pA)

ln (sA + uatm)− ln (sB + uatm)
(A.6)

It has to be noted that this derivation is only valid for true volume constant conditions

∆u = 0 and only within the elastic domain. As the force measurement in the laboratory

involves small deformation of the load cell this boundary condition has to be considered

for the evaluation. In addition, swelling tests are commonly performed in oedometric cells

without measurement of the radial stress, therefore an estimation of K0 (e.g., with Jaky’s

formula) is needed in order to calculate the mean stress p.
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B. Appendix B

In this appendix the Young’s modulus E as well the Poisson’s ratio ν are derived from

linear elasticity theory for biaxial compression boundary conditions. First with linear

elasticity theory the following relationships between strain and stress increments are ob-

tained:

∆ε11 =
1

E
· (∆σ11 − ν · (∆σ22 +∆σ33))

∆ε22 =
1

E
· (∆σ22 − ν · (∆σ11 +∆σ33))

∆ε33 =
1

E
· (∆σ33 − ν · (∆σ11 +∆σ22))

Considering the boundary conditions of the biaxial test ∆ε33 = 0 and ∆σ22 = 0 the

equations can be simplified:

∆ε11 =
1

E
· (∆σ11 − ν ·∆σ33)

∆ε22 =
1

E
· (−ν · (∆σ11 +∆σ33))

0 =
1

E
· (∆σ33 − ν ·∆σ11)

Solving the system of linear equations for the Young’s modulus E leads to:

E =
∆σ11
∆ε11

· (1− ν2) (B.1)

Solving the equations for the Poisson’s ratio ν and considering that εv = Σεii results in:

ν =
∆εv −∆ε11
∆εv − 2∆ε11

(B.2)
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C. Appendix C

In Section 5.7.3, various curves of pore water pressure development were extracted from

the axisymmetric model (see Figure 5.91). While the characteristic pore water pressure

peak was identified, it was decided not to include this as a predefined boundary condi-

tion , as it was assumed that the low permeability of Opalinus clay shale and the rapid

excavation process render its effect negligible. Nevertheless, in additional simulations the

influence of the temporal evolution of pore water pressure is compared for all three cases

in terms of the EDZ area and permeability ratio, as illustrated in Figures C.1 and C.2,

respectively. The various curves of pore water pressure development shown in Figure 5.91

are applied as predefined pore water pressures at the tunnel wall of the plane strain tunnel

model.

As evident from the resulting evolution of the EDZ area and the permeability ratio within

the EDZ, the temporal evolution of pore water pressure applied in the simulation during

tunnel excavation has almost no influence on the results. Therefore, the choice of a linear

pore water pressure decrease during excavation is validated as justified.
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Figure C.1.: Comparison of simulations with different pore-water pressure evolutions at

the tunnel wall during excavation in terms of the EDZ area
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the tunnel wall during excavation in terms of permeability ratio
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unter Berücksichtigung der Verformung im Boden

23 (1995) Thomas Neteler

Bewertungsmodell für die nutzungsbezogene Auswahl von Verfahren zur Altlastensanierung

24 (1995) Ralph Kockel

Scherfestigkeit von Mischabfall im Hinblick auf die Standsicherheit von Deponien

25 (1996) Jan Laue

Zur Setzung von Flachfundamenten auf Sand unter wiederholten Lastereignissen

26 (1996) Gunnar Heibrock

Zur Rissbildung durch Austrocknung in mineralischen Abdichtungsschichten

an der Basis von Deponien

27 (1996) Thomas Siemer

Zentrifugen-Modellversuche zur dynamischen Wechselwirkung zwischen Bauwerken

und Baugrund infolge stos̈artiger Belastung

28 (1996) Viswanadham V. S. Bhamidipati

Geosynthetic Reinforced Mineral Sealing Layers of Landfills



29 (1997) Frank Trappmann

Abschätzung von technischem Risiko und Energiebedarf bei Sanierungsmas̈nahmen

für Altlasten

30 (1997) André Schürmann
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