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Abstract

The goal of this research is to explore the influence of fines content and stress induced

anisotropy on the small and intermediate strain properties (Gmax, G(γ) and η(γ)) of gran-

ular materials from microscopic to macroscopic level. Accordingly, the work is divided

into two parts: in the first part the influence of fines content is examined and in the

second part the influence of stress-induced anisotropy is assessed.

(1) The resonant column tests were conducted on clean Hostun Sand to detect the influ-

ence of mean effective stress, p′, and void ratio, e, on Gmax, G(γ) and η(γ). Then, the

effect of fines on the maximum shear modulus, Gmax, G(γ) and damping ratio, η(γ), was

investigated with a systematic increase in fines content, fc, up to 40%. The experimental

results revealed that Gmax decreased with an increase in e and fc. Furthermore, the ex-

perimental results showed that damping ratio increased with an increase in fc up to fc of

20% and it then decreased with further increase in fines content.

Micro CT scans demonstrated that sand with fines develops two different micro-structures:

“fines-in-sand” and “sand-in-fines”. For “fines-in-sand”, fine particles are partially active

in the sand force structure and for “sand-in-fines”, sand particles float in fine particles.

The void ratio, e, does not capture the force structure or fabric of the sample and only

represents the density of the sample. The equivalent granular void ratio, e∗, is a parame-

ter for the density and fabric of the sample in transition soils.

Analyses conducted in this study revealed that e∗ in comparison with e provides a unique

relationship between Gmax, f(p′) and f(e∗) in space, where the fitting parameters of

Hardin´s relationship are the same as clean sand. This unique relationship can be used

to predict the small and intermediate strain properties of granular materials containing

fines based on test results for the clean host material.

(2) The resonant column device was modified for applying the additional vertical stress

inside the samples for the anisotropic stress state tests. Simulation using FEM and piezo-

electric elements were employed for the calibration and validation of the modified device.

Then a series of stress induced anisotropic tests were conducted on Hostun Sand specimens

for various stress paths (sp): isotropic loading, sp I (σ3 = constant), sp II (p′ = constant),

sp III (K= constant.), where σ1 and σ3 are the principal stresses, p′ = (σ1 + 2σ3)/3) and

K = σ3/σ1. Experimental results revealed that the impact of stress induced anisotropy on

the small and intermediate strain properties of dry Hostun Sand depends on the adopted

stress path. In sp I, the effect of the stress ratio on Gmax was significant but the influ-
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ence of the stress ratio on G(γ)/Gmax and η(γ) was not significant. The experimental

results reveal a significant influence of stress induced anisotropy on Gmax, G(γ)/Gmax

and η(γ) for sp II and III. The empirical relationships were written as a function of stress

components to predict the small and intermediate strain properties of granular material

subjected to stress induced anisotropy for different stress paths.

DEM analyses were also conducted on a granular packing to determine the effect of stress

induced anisotropy on the contact properties for various stress paths from the micro-

scopic point of view. The micro-mechanical observations showed that the variations in

normal contact force in the grain-to-grain contacts and coordination numbers were the

main micro-mechanical properties which had a significant effect on the values of Gmax

and G/Gmax for different stress paths.



v

Zusammenfassung

In dieser Arbeit wird der Einfluss des Feinkornanteils und der spannungsinduzierten

Anisotropie auf die Steifigkeit und das Dämpfungsverhalten von granularen Materialien

bei kleinen und mittleren Dehnungszuständen auf makroskopischer und mikroskopischer

Ebene betrachtet. Ziel ist es für die unterschiedlichen Ausgangs- und Randbedingungen

(Feinkornanteil und anisotroper Spannungszustand) Ansätze zu entwickeln, die maßgeben-

den Steifigkeiten (Steifigkeit bei kleinen Dehnungen Gmax, Steifigkeit als Funktion der

Dehnung, G(γ), und die zutreffende Dämpfung, γ), aus möglichst wenig Versuchen zu

bestimmen. Entsprechend gliedert sich die Arbeit in zwei Teile. Im ersten Teil (1) wird

der Einfluss des Fein-kornanteils betrachtet, im zweiten (2) der Einfluss der spannungsin-

duzierten Anisotropie.

Zu (1) werden zunächst Resonant Column (RC) Versuche an Huston Sand durchgeführt,

wobei der Einfluss des Spannungszustandes und der Porenzahl auf Gmax, G(γ) und η(γ)

erfasst wird. Anschließend wird mit dieser Versuchstechnik der Einfluss des Feinkornan-

teils fc in Huston Sand auf Gmax, G(γ) und η(γ) systematisch in einem Bereich von fc =

0 bis fc = 40 % untersucht.

Die Versuche zeigen, dass Gmax mit zunehmender Porenzahl und zunehmenden Fein-

kornanteil kleiner wird. Die Dämpfung, η(γ), steigt zunächst mit zunehmendem Fein-

korngehalt bis fc = 20 % an. Bei größerem fc nimmt sie wieder ab. Im Mikro-CT

konnte nachgewiesen werden, dass sich auf mikroskopischer Ebene zwei unterschiedliche

Strukturen in Abhängigkeit des Feinkornanteils ausbilden, ”Feines im Sand”, wenn die

feinen Partikel an der Lastabtragung zwischen den Körnern nur begrenzt partizipieren,

und ”Sand im Feinen”, wenn die Sandkörner im Feinanteil schwimmen. Die Zustandsgröße

Porenzahl e kann diese Übergänge nicht abbilden, wogegen die äquivalente Porenzahl e∗

eine konsistente Zustandsgröße darstellt. Mit deren Einführung ergibt sich die Beziehung

Gmax/Apa(
ṕ
pa

)n vs f(e∗), worin die Parameter A und n unabhängig vom Feinkornanteil

sind und am Sand ohne Feinkornanteil ermittelt werden können. Damit können Gmax,

G(γ) und η(γ) für einen Sand mit unterschiedlichem Feinkornanteil allein auf Basis von

Versuchen am reinen Sand bestimmt werden.

Zu (2) wurde das vorhandene RC-Gerät zunächst um eine Belastungseinrichtung zum Auf-

bringen zusätzlicher Vertikalspannungen und damit anisotroper Spannungszustände auf

die Probe erweitert. Dazu wurde das Systemverhalten durch numerische Berechnungen
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abgebildet und das Gerät nach dem Umbau unter anderem durch Vergleichsmessungen

mit Piezoelementen kalibriert und die Funktion validiert. Anschließend wurde das Ver-

halten von Huston Sand unter vier Spannungspfaden (sp) ermittelt: isotrope Belastung,

sp I (σ3 = const.), sp II (p = const), sp III (K = const.) mit σ1 und σ3 Hauptspannungen,

p = (σ1 +2σ3)/3), K = σ3/σ1. Die Abhängigkeit der Eigenschaften des Sandes bei kleinen

Dehnungen vom Spannungspfad wurde dabei deutlich. Unter sp I ist die ist der Einfluss

des Spannungsverhältnisses auf Gmax ausgeprägt aber auf G(γ) und die Dämpfung, η(γ),

nicht. Bei sp II und sp III wirkt sich die Anisotropie auf alle drei Parameter, Gmax,

G(γ) und η(γ) aus. Bekannte empirische Beziehungen werden verwendet, um die Span-

nungspfadabhängigkeit von Gmax, G(γ) und η(γ) zu erfassen und ein Bestimmen dieser

Parameter zu ermöglichen. Um die gefundenen Abhängigkeiten physikalisch zu erklären,

wird das Spannungs-Verformungsverhaltens granularer Materialien bei kleinen Dehnun-

gen numerisch mit der Methode der DEM abgebildet. Dieses erlaubt die Lastabtragung

zwischen den Körnern auf der Mikrostrukturebene zu bewerten. Aus den Ergebnissen

wird die Abhängigkeit zwischen der anisotropen Belastung, den Veränderungen in den

Normalkräften in den Korn-zu Korn-Kontakten sowie der Koordinationszahl und den

Veränderungen von Gmax, G(γ) und η(γ) bei den verschiedenen Spannungspfaden deut-

lich.
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Vorwort des Herausgebers

Die vorliegende Promotion von Herrn Meisam Goudarzy ist im Bereich der Grundlagen-

forschung in der Bodenmechanik angesiedelt. Herr Goudarzy beschäftigt sich sowohl

experimentell, als auch numerisch mit den Eigenschaften von granularen Materialien

bei kleinen Dehnungsamplituden. Im Vordergrund stehen dabei die maximale (Schub-)

Steifigkeit und deren Entwicklung mit zunehmender Schubverzerrung. Außerdem unter-

sucht Herr Goudarzy die Änderung der Dämpfung mit der Schubverzerrungsamplitude.

Derartige Studien an granularen Materialien haben mittlerweile eine über dreißigjährige

Tradition in der Bodenmechanik. Neuartig an Herrn Goudarzys Untersuchung ist die
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zu dokumentieren, die den Einfluss der belastungsinduzierten Anisotropie auf die genan-

nten Stoffeigenschaften untersuchen. Auf Grund der gerätespezifisch schwierigen Her-

ausforderung im Resonant Column Gerät (RC) sind derartige Studien, welche die Auf-

bringung eines anisotropen Spannungszustandes vor Untersuchung der Probe erfordern,

nur im geringen Umfang dokumentiert. In dieser Arbeit wird (nach unserer Kenntnis erst-

mals) der eigentlich im RC-Gerät isotrope Spannungszustand durch die Aufbringung einer

zusätzlichen Vertikalspannung anisotrop erweitert. Die notwendigen Gerätemodifikatio-

nen wurden umfangreich verifiziert und kalibriert. Herr Goudarzy setzt mit seiner Arbeit

erfolgreich eine Bochumer Forschungstradition auf dem allgemeinen Gebiet der Bodendy-

namik fort, die vor bereits mehreren Jahrzehnten durch Prof. Jessberger begründet wurde.
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1 Introduction

1.1 Introduction

Experimental and analytical studies in the last few decades show that the mechanical

properties of geo-materials strongly depend on the amplitude of deformation or vibration

generated by dynamic events, e.g. earthquake, traffic, machine foundations. For exam-

ple, during an earthquake, compression and shear waves propagate through the soil mass

from the bedrock to the designed structures. The goal is to find the effect of waves on the

stability of structures located on the soil mass. The structures are usually safe against

compression waves because of the weight of the structure. Therefore, the shear component

of seismic waves is usually the most critical component because of the susceptibility of

structures to horizontal motions and ground settlement during vibration (Darendeli 2001).

Thus, to evaluate the stability of structures, it is important to assess the response of soil

to the shear wave (vertical propagation and horizontal polarization) which is generated

by earthquake or vibration of bedrock (Figure 1.1). Different parameters (e.g. depth or

distance of vibration source, soil properties and duration of vibration) make significant

effects on response of structure or ground motion during a vibration. Among these pa-

rameters, soil properties can make significant effects on soil-structure interaction during

wave propagation (Darendeli 2001). Shear modulus, G, and material damping, η, are soil

properties which have a significant effect on ground motion during vibration (Seed et al.

1986). These properties are used to determine the velocities and decay of stress waves

propagating through the geomaterials.
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Figure 1.2: Schematic sketch of shear stress versus shear strain: (a) monotonic and cyclic

loading (Mitchell & Soga 2005); (b) damping ratio, η = ∆W
2πW

(Ishihara 1996)
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Furthermore, settlement of soils is one of the challenging problems in the soil-structure

interaction problems during earthquake or ground shaking. Differential settlement may

cause distress in the structures founded in the soil mass during earthquake (Ghayoomi

et al. 2010). The primary factor controlling settlement in dry sands is cyclic shear strain

amplitude during earthquake shaking which is a function of shear modulus at any given

depth in a soil deposit (e.g. Tokimatsu & Seed 1987). The settlement behavior of soils

during earthquake may differ from those predicted by models based on the isotropic stress

conditions (e.g. Tokimatsu & Seed 1987), which can lead to an inefficient or unsafe design.

Therefore, to perform an accurate dynamic analysis the shear stiffness and damping ratio

must be determined accurately. Shear modulus, G, represents the shear stiffness of soil

elements. Shear modulus can be defined as the gradient of τ -γ curve (Ishihara 1996).

Regarding this curve, shear modulus of soils changes with strain amplitude (Figure 1.2a).

In soil elements subjected to cyclic loading, generated hysteresis loop (Figure 1.2b) rep-

resents the effect of shear strain on shear stress (Ishihara 1996). In this case, damping of

material is defined as dissipated energy, ∆W , at a cycle of loading over the total energy,

W (Ishihara 1996). Dissipated energy over the loading cycle is represented by the white

area in Figure 1.2b (hysteresis loop) and total energy is represented by triangular area

(hatched area).
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Figure 1.3: Characteristics of shear modulus and damping ratio of soils at different strain

levels (Wang & Santamarina 2007)
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Shear stiffness and damping ratio are significantly affected by amplitude of shear strain

which is important in deposited soils because the stiffness and damping in each layer is

related to the amplitude of shear strain in that layer. Figure 1.3 shows a schematic shape

of damping and modulus ratio versus amplitude of shear strain in logarithmic scale. This

figure shows that the shear modulus decreases with an increase in the amplitude of shear

strain and damping ratio increases with an increase in the amplitude of shear strain.

The previous studies using resonant column and torsional shear device, e.g. Hardin &

Drnevich (1972b), Drnevich (1978), Seed et al. (1986) and Wichtmann & Triantafyllidis

(2013), confirm that shear modulus at small strain region has the maximum value which

is called maximum shear modulus, Gmax. At this region soil behavior is linear and soil

behave nonlinear with further increase in the amplitude of shear strain (Figure 1.3). Mate-

rial damping ratio at small strain region has the minimum value which is called minimum

damping ratio, ηmin and it increases with further increase in the amplitude of shear strain.

In analyzing the response of soil elements when these elements are subjected to small de-

formations or vibrations, elastic parameters (Gmax and ηmin) are applicable for analyzing

the response of soils. By increasing the amplitude of deformations, shear modulus, G, and

damping ratio, η, will be different in comparison with the initial values. The mechanical

properties of soils at medium strain region (Figure 1.3) is so-called intermediate strain

properties in the current research work. Small and intermediate strain properties (Gmax,

G(γ), η(γ)) of geo-materials are key parameters to analyze the mechanical response of

soil elements subjected to small deformation or vibration (Benz 2007). To perform an

accurate analysis, especially in deposited soils, stiffness and damping ratio in soil elements

must be determined at different level of deformation or vibration accurately. For an ex-

ample, equivalent linear procedure proposed by Schnable et al. (1972) and developed by

Idriss & Sun (1992) is one of the concepts that is applicable to account the nonlinearity

of soils using an iterative procedure to obtain values of modulus and damping.

The small and intermediate strain stiffness of soils can be measured using laboratory tests

on undisturbed or disturbed soil samples, including: piezoelectric elements (e.g. Jovicic

& Coop 1988, Sadek 2006 and Wang & Mok 2008), torsional shear test (e.g. Tatsuoka

et al. 1978, Stokoe et al. 1999a) and resonant column device (e.g. Hardin & Drnevich

1972b, Drnevich 1978 and Wichtmann & Triantafyllidis 2013) or in the field from in-situ

tests including: seismic piezo-cone sounding (e.g. Schneider & Mayne 1999 and Stokoe

et al. 1999a). In-situ geo-physical tests are also available to measure the wave velocity

and consequently, stiffness in different soil layers (e.g. Figure 1.4 from Schneider & Mayne

1999).
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Mayne 1999)

1.2 Background and objective of this study

In the last few decades, a number of cyclic and dynamic laboratory measurements have

been conducted for determining the stress-strain properties of granular arrays and natural

sands at small to intermediate strain regions. The small and intermediate strain proper-

ties includ: i) maximum shear modulus at small strains, Gmax; ii) the variation of shear

modulus with shear strain, G(γ); iii) the variation of damping ratio with strain, η; and,

iv) the reference shear strain, γr.

The effect of various parameters on the small and intermediate strain properties of geo-



6 1 Introduction

materials have been studied in previous works. However, by reviewing the literature,

systematic studies on the effect of fines content and stress induced anisotropy are rare

and the following gaps can be highlighted.

Part 1: there are soils with the same host sand but with different amount of fines along

the geological profile, e.g. Christchurch, New Zealand (Green & Cubrinovski 2010) and

Ahmedabad, India (Raju et al. 2004) where both sites severely liquefied during earth-

quakes. The influence of fine particles on sand force structure, from micro-structure point

of view, was presented by Mitchell (1976) and then simplified by Thevanayagam (1998) for

other mechanical responses of transition soils. In transition soils, the concept of threshold

fines content (fthr) is important for separating ”fines-in-sand” and ”sand-in-fines” models

(Rahman & Lo 2008). Depending on the interaction between fine and sand particles, The-

vanayagam (1998) suggested an ”equivalent” void ratio, e∗ instead of e as an appropriate

density index (the concept of e∗ is discussed later). Thevanayagam (1999) and Rahman

et al. (2012) used the concept of equivalent void ratio for limited published data sets to

predict maximum shear modulus in transition soils. However, collected data sets were

originally not designed for the evaluation of e∗ to capture the effect of fc on Gmax and the

maximum fc was only 20%. Thus, a suitable approach for capturing the effect of a wide

range of fc on Gmax, G(γ) and η(γ) is still a topic of research interest. Furthermore, the

effect of fc on the fabric of soil must be explained through the microscopic observations.

Part 2: from the literature, numerous experimental studies have been done by resonant

column device to evaluate the influence of various parameters on the small strain proper-

ties of geo-materials but, these studies were restricted to the isotropic stress state. As we

know, in soil-structure interaction problems, most of the times we are dealing with soil

elements subjected to anisotropic loading. The small and intermediate strain properties

of soil elements may be different than the observed results at the laboratory under the

isotropic stress state.

Studies on the effect of stress induced anisotropy can be divided into two main groups:1-

studies on the small strain properties (Gmax and ηmin) and, 2- studies on intermediate

strain properties of granular materials (G(γ) and η(γ)).

By reviewing the literature (Chapter 2), numerous experimental studies were conducted

by piezoelectric elements for evaluating the effect of induced anisotropy on Gmax (small

strain properties) of granular materials, although some of them (e.g. Hardin & Black

1966, Tatsuoka et al. 1979, Yu & Richart 1984, Santamarina & Cascante 1996) used the

resonant column device and they concluded that at stress ratio less than two, the effect

of stress induced anisotropy on Gmax is not significant but their studies were restricted to

dense samples. Therefore, the effect of density of sample on the maximum shear modulus
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must be assessed for different stress paths.

Regarding the literature, studies on the effect of induced anisotropy on intermediate strain

properties of granular material are rare, and we can refer to the performed study by Tat-

suoka et al. (1979) using a torsional shear device. He studied the effect of stress induced

anisotropy on damping ratio and shear modulus for one stress path (confining pressure

constant and vertical pressure variable) and reported that the impact of stress ratio on

damping is not significant. But, their study was restricted to the stress path with con-

stant confining pressure, however, soil elements may be subjected to more complicated

stress conditions in comparison with the stress conditions applied in the existing studies

up to now. Therefore, the second goal of this study is to find the effect of stress induced

anisotropy, for different stress paths, and density of sample on the small and especially

intermediate strain properties of sand. The experimental results are used to present a

model for prediction the modulus degradation and damping ratio in the soil samples sub-

jected to stress induced anisotropy for different stress paths.

Experimental methods to measure the small strain stiffness do not cause fabric changes

(Santamarina & Aloufi 1999). Therefore, contact parameters, contact forces and contact

numbers, will control the response of granular packing at macroscopic level. At micro-

scopic point of view, properties of the particles, interaction laws at the contact level, as

well as the distribution of contact- and force-networks, i.e. the micro-structure of the

sample, can induce modifications to the shear stiffness of the packing, as measured in

experiments. In this work the discrete element method (DEM) is used to study the be-

havior of the force/contact network during axisymmetric compression with different stress

ratio. The orientation of contacts and distribution of forces and also their evolution dur-

ing the various deformation paths will be discussed. Final goal is to link the modulus in

granular materials to the orientation of the normal and tangential force network. Finally,

the influence of stress ratio and force network on the maximum shear modulus, modulus

degradation and damping is carefully discussed and findings are compared with labora-

tory results from the resonant column device.

Therefore, the goals of the study are to answer the following questions:

• What is the effect of fines content,”fines-in-sand” and ”sand-in-fines”, on small and

intermediate strain properties of sand samples?

• Is it possible to predict the small strain properties of host sand containing fines

content with concept of equivalent granular void ratio?

• What is the effect of stress induced anisotropy for various stress paths on small and

intermediate strain properties of sand?
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• Is it possible to predict the small and intermediate strain properties of sand sub-

jected to stress induced anisotropy?

• How small strain stiffness is affected by fines content and stress induced anisotropy

from the microscopic point of view?

1.3 General concept of the study

Experimental and analytical methods are adopted to find and discuss the effect of fines

content and stress induced anisotropy on the small and intermediate strain properties of

granular materials. Resonant column device and piezoelectric elements are used for the

experimental study. Afterward, Micro-CT scanning and DEM simulation are employed to

analyze the experimental results from the microscopic point of view. Finally, the exper-

imental results are used to modify and develop the empirical relationships for predicting

the small and intermediate strain properties of granular materials containing fines content

and subjected to stress induced anisotropy for different stress paths (Figure 1.5).

Fines content:

Resonant column and piezoelectric element tests will be conducted on the mixture con-

taining wide range of fines content. Two mixtures will be used for this section: i) angular

sand mixed with quartz powder ii) highly rounded glass particles mixed with rounded

fines glass beads. Micro-CT scanning will be used to discuss the observed experimental

results from microscopic point of view. Afterward, the conceptual frame work developed

by Thevanayagam (1998) will be assessed to predict the small strain properties of sand

in fine and fine in sand mixtures.

Stress induced anisotropy:

Bochum resonant column device will be modified to perform the test on the samples

subjected to the stress induced anisotropy for different stress paths. The method of mod-

ification and adopted numerical and experimental methods for validation and calibration

of modified resonant column device will be discussed in this thesis. Afterward, a series of

stress induced anisotropic tests will be conducted on spherical glass particles and angular

sand. DEM simulations, using TRUBAL code, will be calibrated with the experimental

results on glass bead samples. This analysis will be used to discuses the observed ex-

perimental results from microscopic point of view. Then, resonant column tests on sand

samples will be used to develop an empirical relation to predict the intermediate strain

properties of granular materials. Due to the limitation of device, maximum applied shear

strain was about 3× 10−4 and maximum applied stress ratio was 3.00.
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1.4 Organization of the dissertation

The thesis consists of seven chapters, of which the content can be briefly described as

follows:

Chapter 1: Presents an introduction on this research work.

Chapter 2: Presents a brief literature review on the small strain response of geo-

materials, effects of initial conditions, effects of boundary conditions and material prop-

erties. This chapter will highlight the performed works on the small strain stiffness,

regarding the objective and scope of this research work.

Chapter 3: The experimental program will be discussed in this chapter. This chapter

will highlight the adopted procedure and limitations of adopted procedure for approaching

to the objective. Calibration, validation and limitation of adopted experimental appara-

tus (Bochum resonant column device) will be discussed in this chapter.

Chapter 4: Presents the observed experimental results on impact of fine particles on

small strain properties of granular materials. Equivalent void ratio concept will be used

to discuss the observed experimental results. Furthermore, observed experimental results

will be discussed from the microscopic point of view.

Chapter 5: Discrete Element Method, DEM, will be introduced and calibrated in this

chapter. Calibrated model will be used to explain the effect of stress induced anisotropy

from micro-mechanic point of view.

The experimental results on the effect of stress induced anisotropy on the small strain

properties of granular materials will be presented in this chapter. Empirical relations will

be modified to predict the maximum shear modulus and damping of sands subjected to

anisotropic loading.

Chapter 6: Draws conclusions, gives recommendations, and suggests further areas of

study.



2 Literature review

2.1 Introduction

In the past few decades, a number of experimental studies have been conducted for de-

termining the stress-strain properties of granular packings and natural sands at small to

intermediate strain regions. The small and intermediate strain properties have included:

i) maximum shear modulus at small strains, Gmax; ii) the variation of shear modulus

with shear strain, G(γ); iii) the variation of damping ratio with strain, η(γ); and, iv)

the reference shear strain, γr. Important experimental results have been presented by

Hardin & Richart (1963), Hardin & Black (1966), Hardin & Drnevich (1972b), Afifi &

Richart (1973), Iwasaki & Tatsuoka (1977), Drnevich (1978), Kokusho (1980), Avramidis

& Saxena (1990), Ishibashi et al. (1991), Ashmawy & Drnevich (1994), Jamiolkowski et al.

(1995), Cascante & Santamarina (1996), Lo Presti et al. (1997), Chien & Oh (1998), Fio-

ravante (2000), Darendeli (2001), Cascante et al. (2005), Chang et al. (2006), Wichtmann

& Triantafyllidis (2009), Clayton (2011) and Wichtmann & Triantafyllidis (2013). The

published results indicate that the small and intermediate strain properties of soils are

affected by various parameters, e.g. strain amplitude, stress conditions, void ratio, num-

ber of loading cycles, degree of saturation, the over-consolidation ratio (OCR), loading

frequency, aging, soil gradation, soil structure, and so on. Among these parameters, the

mean effective stress, void ratio and shear strain amplitude are the predominant ones.

The effects of some important parameters, including; particle characteristics, void ratio,

confining pressure, fines content, sample preparation and stress induced anisotropy, on

the small and intermediate strain properties of geo-materials are presented in this chap-

ter. The effects are discussed from the micro-mechanics point of view (at particle contact

level), which has a strong connection to particle and contact characteristics. The gaps in

our current understanding on the effects of fines content and stress induced anisotropy

will be highlighted in this chapter.

11
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2.2 Particle characteristics

Particle characteristics include particle size, particle shape, and mineral composition of

particles. From a microscopic point of view, Skinner (1969) performed a series of shear

box tests and showed that the coefficient of friction between two spherical glass ballotini

increases with an increase in the particle size. From a macroscopic point of view, in

spherical arrays, Patel et al. (2008) conducted tests using bender elements and reported

that the size dependence of the small strain stiffness is not in line with the results presented

for sand samples (Figure 2.1a). However, it appears to be consistent with the results

presented by Bartake & Singh (2007), who performed BE tests on three dry sands with

similar gradation and foundGmax increased as the mean particle size of the sand decreased.

Gu & Yang (2013), conducted a series of RC and BE tests on glass beads with different

particle sizes and concluded that the maximum shear modulus is affected slightly by

particle size and Gmax decreased with increasing particle size in glass bead samples. From

the micro-mechanic perspective, Gu & Yang (2013) concluded that the maximum shear

modulus is independent of sphere radius.

Hardin & Drnevich (1972a) concluded from the results of resonant column tests that the

influence of particle size on maximum shear modulus can be explained through the effect

of particle size on void ratio. Ishihara (1996) summarized the published data points as

in Figure 2.2 to show the impact of particle size. He concluded that Gmax decreases

with decreasing particle size in the soil samples. Hardin & Kalinski (2005), based on

experimental results from the resonant column test, concluded that the value of Gmax for

relatively clean uniform and graded gravels increases with particle size and they defined

the particle size function (f(D)) to capture the impact of particle size.
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Figure 2.1: The effect of particle size on: (a) shear wave velocity (Patel et al. 2008); (b)

maximum shear modulus (Gu & Yang 2013)
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Figure 2.2: The effect of particle size on maximum shear modulus (Ishihara 1996)

The mineral composition of particles is the primary parameter governing many proper-

ties of particles. For example, mineral composition controls the specific gravity (Terzaghi

et al. 1996) and the particle elastic constants, i.e. Young’s modulus, shear modulus, and

Poisson´s ratio (Mitchell & Soga 2005). Furthermore, the elastic constants influence con-

tact properties, such as contact area, contact pressure, and consequently, contact stiffness

(Hertz 1882). Mineral composition is also a key parameter influencing particle surface

properties such as water adsorption/absorption, and electro-chemical bonding, especially

for fine particles such as clay (Mitchell & Soga 2005). Many researchers (e.g. Koerner

1970, Procter & Barton 1974) have suggested that the particle mineral composition sig-

nificantly influences the inter-particle friction coefficient.
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Figure 2.3: The effect of particle shape on constant parameters of shear wave velocity,

Vs = α(σ0)β, (Cho et al. 2006)

Particle shape is an inherent soil characteristic that plays a major role in the mechanical

behaviour of soils (Mitchell & Soga 2005). Barrett (1980) suggested that particle shape
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includes three independent properties, particle form, particle roundness, and surface tex-

ture or particle roughness. Koerner (1970), Miura et al. (1997), Cho et al. (2006) and

Reddy (2008) have shown that the void ratio range, emax − emin, is a function of particle

form and particle roundness/angularity. Bowden & Tabor (1950) have suggested that

particle roughness strongly influences inter-particle friction. It is recognized that particle

shape controls the fabric of soils, e.g. particle and contact orientations and type of con-

tacts (Mitchell & Soga 2005).

Cho et al. (2006) mounted piezoelectric elements in an oedometer device and studied the

influence of particle shapes on shear wave velocity and they reported that the increase

in the particle irregularity (angularity and/or eccentricity) leads to a decrease in stiff-

ness (Figure 2.3). Shin & Santamarina (2013) studied the influence of particle shape on

the mechanical behaviour of soils. They measured wave velocity in mixtures containing

rounded Ottawa 20-30 sand and angular blasting sand using bender elements installed in

the oedometer cell. From the experimental results, they reported that Gmax increased by

increasing the mass fraction of angular particles.

Yang & Wei 2012 performed a series of undrained triaxial tests on the mixtures contain-

ing angular and rounded coarse and fine particles. They concluded that the behaviour of

mixtures strongly depends on the shape of coarse and fine particles.

2.3 Void ratio

Void ratio is a packing characteristic and has a significant effect on the maximum shear

modulus. From a micro-mechanics point of view, the effect of void ratio can be explained

through the number of contacts (Figure 2.4). As can be seen in Figure 2.4, the number

of contacts decreases significantly with an increase in the void ratio. The effect of void

ratio on the maximum shear modulus can be explained through the coordination number,

CN , from the micro-mechanic points of view (Section 5.2). It has been shown that CN

strongly depends on the void ratio, e.g. Smith et al. (1929), Field (1963), Oda (1972),

Oda (1977), Yanagisawa (1983) and so on.

At a macroscopic level, experimental evidence confirms that the value of Gmax decreases

with an increasing void ratio (Figure 2.5). The impact of void ratio on maximum shear

modulus is captured through void ratio function (f(e)) which was developed by Hardin

& Drnevich (1972b). Other researchers in the past few decades, in relation to their

experimental results, have proposed various void ratio functions which are summarized in
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Table 2.1. In contrast, the curves G(γ) and η(γ) are rather independent of soil density or

void ratio (e.g. Tatsuoka et al. 1978, Kokusho 1980, Wichtmann & Triantafyllidis 2013).
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Table 2.1: Some of the main void ratio functions from the literature, modified after Bui

(2009)

Soil e f(e) n Ref.

Ottawa sand - (2.174−e)2
1+e 0.5 Hardin & Black (1966)

Crusged Quartz - (2.973−e)2
1+e 0.5 Hardin & Black (1966)

Kaolinite (2.97−e)2
1+e 0.5 Hardin & Drnevich (1972b)

Bentonite 1.5-2.5 (4.4−e)2
1+e 0.5 Marcuson & Whals (1972)

Teganuma Clay 1.5-4 (7.32−e)2
1+e 0.45 Kokusho et al. (1982)

Quiou sand 0.9-1.1 e−1.3 0.62 Lo Presti et al. (1997)

Toyoura sand 0.81-0.95 e−1.3 Lo Presti et al. (1997)

Ticino sand 0.81-0.95 (2.27−e)2
1+e 0.43 Lo Presti et al. (1993)

reconstituted clay - (1 + e)−2.4 0.5 Shibuya et al. (1997)

Kenya carbonate sand 0.81 e−0.8 0.516 Fioravante (2000)

Quartz sand 0.4-0.85 (1.8−e)2
1+e 0.42 Wichtmann & Triantafyllidis (2009)

Glass beads 0.58-0.65 e−3.98 0.403 Goudarzy et al. (2014)

2.4 Confining pressure

Stiffness of granular materials depends on the micro-structural properties, mainly, particle

and contact properties. However, for a given material, particle properties may remain the

same and contact properties will have the major contribution to the variation in packing

stiffness. According to the Hertz-Mindlin’s theory, the normal and tangential stiffness

are function of contact forces and the elastic properties of a particle (Johnson 1985 and

Yimsiri & Soga 2002).

KT = L2KN

[
1− FT

FN tanφ

]ζ
(2.1)

Where KN is the normal stiffness (KN = L1F
Ω
N ), L1 and L2 are related to the particle

properties, ζ and Ω are material constants (ζ=Ω=1/3, Yimsiri & Soga 2002), FN and FT

are normal and tangential forces at contact points, and φ is the friction angle between

two particles.

The effect of confining pressure on the distribution of contact forces have also been studied

in recent decades (e.g. Petrakis et al. 1988, Rothenburg & Bathurst 1989, Ng & Petrakis

1996, Wang & Mok 2008).

Several authors (e.g. Gassmann 1951, White & Sengbush 1953, Brandt 1955) calculated
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the influence of isotropic confining pressure on wave velocity for various arrays of smooth

and rough spheres. Also, they concluded that both velocities increase proportionally to

σ
1/6
0 . Based on Hertz’s theory, Duffy & Mindlin (1957) and Duffy (1959) theoretically

concluded that the tangential stiffness of sphere packing is proportional to the cubic root

of effective stress (σ1/3). For regular packing, Petrakis & Dobry (1987), and for random

packing of sphere, Walton (1987) and Liao et al. (2000) have shown that the exponent of

isotropic pressure is equal to 1/3.

At a macroscopic level, it is well-known that G is related to σn; the exponent n can be

used as an indicator of the type of contact which can be a value from 1/3 for spherical

contacts to 1/2 for cone to plane contacts (Cascante & Santamarina 1996). Experimental

works conducted by many researchers with various soils show that Gmax increases in an

exponential manner with mean effective stress. A summary of determined values for stress

exponent, n, is presented in Table 2.1. This table shows the exponent n in practice varies

from 0.4 to 0.62 and the value of 0.5 was proposed by many researchers.

From a microscopic point of view, dissipation of energy between two particles (Figure

2.6a) subjected to the sinusoidal oscillation is written as Equation 2.2 (Johnson 1985).

∆W =
9µ2F 2

N

10R

(
2− ν1

G1

+
2− ν2

G2

)[
1−
(

1− Q

µFN

)5/3

− 5Q

6µFN

[
1−
(

1− Q

µFN

)2/3]]
(2.2)

When the amplitude of oscillation is too small (µFN >> Q), the Equation 2.2 is summa-

rized to Equation 2.3 (Johnson 1985).

∆W =
1

36RµFN

(
2− ν1

G1

+
2− ν2

G2

)
Q3 (2.3)

where, G1 and G2 are shear stiffness of particles, ν1 and ν2 are Poisson’s ratio of particles,

µ is the friction coefficient between particles, FN is the normal contact force between par-

ticles, Q is the amplitude of oscillation, R is the particle radius. Damping ratio is defined

as dissipated energy (∆W) at one cycle of loading over the total energy (W), η = ∆W
2πW

,

(Ishihara 1996). For two particles with the same properties, total energy (W ) is the area

of the hatched part in Figure 2.6b, W = (Q× δ)/2. Equation 2.3 was used to determine

the dissipated energy between two particles subjected to a low amplitude of oscillation.

Then damping between two particles, with the same properties, subjected to oscillation,

can be determined using Equation 2.4 (Bui 2009).
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Figure 2.6: Dissipation of energy between two particles subjected to oscillation: (a) par-

ticles subjected to oscillation (b) hysteresis loop (Johnson 1985)

η =
8Q2l

18πµ2F 2
N

[
1−

(
1− Q

µFN

)2/3] (2.4)

The relative tangential displacement of the two particles (Figure 2.6a) is found by Equa-

tion 2.5 (Johnson 1985).

δ =
3µFN
16a

(
2− ν1

G1

+
2− ν2

G2

)[
1−

(
1− Q

µFN

)2/3]
(2.5)

where, a is the Hertz contact area. With regard to Figure 2.6a, shear strain for two

particles with the same properties is equal to γ = δ/l. Thus, from Equation 2.5 the value

of γ can be determined by Equation 2.6 (Bui 2009).

γ =
3µFN
8al

(
2− ν
G

)[
1−

(
1− Q

µFN

)2/3]
(2.6)

From the presented relations at a microscopic level, it can be concluded that particle char-

acteristics, contact force and amplitude of oscillation are factors influencing the damping

ratio in the small strain region.

Experimental works confirm that damping ratio is significantly affected by mean effective

stress at macroscopic level (e.g. Tatsuoka et al. 1978, Kokusho 1980 and Wichtmann &

Triantafyllidis 2013). The experimental results show that damping ratio decreases with

an increase in the mean effective stress.
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2.5 Empirical relationships

Research efforts, since 1960’s, have advanced our understanding of the factors and how

they affect Gmax, G(γ) and η(γ) which has led to the development of various prediction

models which are applicable to the computer programs for site response analysis. Earlier

studies recognized that Gmax, G(γ) and η(γ) for soils depend on the packing density and

mean effective stress (Hardin & Black 1966, Hardin & Drnevich 1972b, Drnevich 1978,

Tatsuoka et al. 1978, Seed et al. 1984). From the experimental results using the resonant

column device, Hardin & Black (1966) proposed one of the most widely used empirical

relationship that considers the effect of density through void ratio (e) and p′ to predict

Gmax of a soil. This relationship is referred as Hardin’s relation which is represented by

the following general form (Equation 2.7):

Gmax = Apa(
p′

pa
)nf(e) (2.7)

where, A is a material constant which depends on soil type, pa is atmospheric pressure

(100 kPa), p′ is mean effective stress, n is an exponent and f(e) is the void ratio func-

tion. Seed et al. (1984) also proposed a relationship between Gmax and p′ as Gmax=218.8

K2,max(p
′)0.5 (in SI unit), where K2,max may be a function of e. Although the above

relationships were adequate to predict Gmax for a particular soil, the evaluation of their

relative performance with a large data set is rare. Also, the effect of particle shape, size

and their distribution for different type of soils were not considered in the above rela-

tionships. Recent studies show that particle size and their distribution have a significant

effect on Gmax (Darendeli 2001, Menq 2003, Hardin & Kalinski 2005, Wichtmann & Tri-

antafyllidis 2009, Wichtmann & Triantafyllidis 2013 and Wichtmann & Triantafyllidis

2014). Wichtmann & Triantafyllidis (2009) studied the effect of grain size distribution

on small and intermediate strain properties of sand samples using the Bochum resonant

column device. They suggested a correlation for fitting parameters of Hardin’s relation to

Cu and d50. Hardin & Kalinski (2005) studied the influence of particle size and reported

that Gmax increased with particles size for uniform graded gravelly sands and Hardin’s

relation can be a function of particle size, f(D).

Empirical relationships were also developed by Hardin & Black (1966) and Roesler (1979)

to predict the maximum shear modulus (Gmax) in the samples subjected to stress induced

anisotropic conditions. Hardin & Black (1966) believed that shear stress has an insignifi-

cant effect on shear modulus, and thus concluded that Equation 2.8 can be used to predict

the maximum shear modulus with sufficient accuracy.

Gmax = Af(e)p(1−n)
a (

σ1 + σ3

2
)n (2.8)
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where, A is the dimensionless coefficient, f(e) is a void ratio function, n is the empirical

stress exponent and pa is atmospheric pressure. Roesler (1979) performed experimental

studies on cubic soil samples to evaluate the effects of stress components on shear wave ve-

locity under anisotropic loading. Roesler (1979) modified general Hardin’s relation based

on the stress components (Equation 2.9).

Gmax = Af(e)pa

(
σ1

pa

)n1
(
σ2

pa

)n2
(
σ3

pa

)n3

(2.9)

where, n1 and n3 are the empirical stress exponents for vertical and horizontal stress

respectively; σ2 is horizontal stress (out of plan stress) and pa is atmospheric pressure.

Based on the studies conducted by Bellotti et al. (1996) and Sadek et al. (2007), n2 is

approximately zero. Thus, Roesler’s relation can be applied for cylindrical samples in a

resonant column device. A Summary of determined values for stress exponents of sample

subjected to stress induced anisotropic tests is presented in Table 2.2.

After Roesler (1979), Yu & Richart (1984) studied the effects of the stress ratio on the

maximum shear modulus (Gmax) of soils subjected to a stress ratio of more than two.

From the observed experimental results, they proposed a reduction factor for Roesler’s

and Hardin’s relationships.

Empirical relationships were also developed and modified to predict the modulus degra-

dation and damping of granular materials.

Table 2.2: The obtained fitting parameters for relationships 2.8, 2.9 from previous works,

(Modified after Wang & Mok 2008)

Isotropic Anisotropic

Test Method Material n n1 n3 Researcher

Cubical sample Fine sand 0.512 0.298 0.214 Roesler (1979)

Resonant column Ottawa sand - 0.25 0.28 Yu & Richart (1984)

Brazil sand - 0.24 0.28

Cylindrical chamber Ticino sand 0.54 0.24 0.30 Lo Presti & O’Neill (1991)

Resonat column Barco sand 0.54 0.20 0.34 Santamarina & Cascante (1996)

Triaxial Ticino sand 0.44 0.272 0.168 Fioravante (2000)

specimen Kenya sand 0.52 0.244 0.272

True triaxial Toyoura sand 0.483 0.27 0.27 Wang & Mok (2008)

box
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Hardin & Drnevich (1972a) proposed a well known empirical relationship (Equation 2.10)

to predict the backbone curve in nonlinear behavior of soil elements. Hardin’s relation is

based on two main parts: maximum shear modulus and reference shear strain.

G

Gmax

=
1

1 + γ
γr

(2.10)

where Gmax is the maximum shear modulus, γ is shear strain and γr is the reference

shear strain. while γr determined at G/Gmax = 0.5 would be the most objective way,

the stiffness curves obtained from the resonant column tests were in the range of G/Gmax

of 0.68 to 1.0 for clean sand, which would not give a reliable γr. However, γr can be

estimated from Equation 2.11:

γr =
τr
G

(2.11)

where, τr is the shear stress corresponding to γr at G/Gmax equal to 0.5.

Also, Hardin & Drnevich (1972a) proposed Equation 2.12 to predict the modulus degra-

dation.
G

Gmax

=
1

1 + γ
γr

[1 + β exp(− γ
γr

)]
(2.12)

where α and b are fitting curve parameters and γr is the reference shear strain.

The value of reference shear strain is defined as (Hardin & Drnevich 1972a):

γr =
τmax
Gmax

(2.13)

where, τmax is the peak shear strength which is determined by Equation 2.14 and Gmax

is the maximum shear modulus (Hardin & Drnevich 1972a).

τmax = σv

[((
1 + (σ3

σ1
)

2

)
sinφ

)2

−
(

1− (σ3
σ1

)

2

)2
]1/2

(2.14)

where, φ is the friction angle, σ3 and σ1 are the confining pressure and the vertical stress

respectively. Tatsuoka et al. (1979) showed that Equation 2.13 and Equation 2.14 are not

valid for determining the reference shear strain in samples subjected to stress induced

anisotropy.

The dependency of γr on the confining pressure can be described as (Stokoe et al. 1999b):

γr = γr1

(
ṕ

pa

)κ
(2.15)

where, γr1 is the reference shear strain when the confining pressure is equal to 100 kPa,

pa is the atmospheric pressure (assumed 100 kPa) and κ is the stress exponent.
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Additionally, in the cases that there is not information about the shear strength of ma-

terials, the normalization of γ can be done by
√

ṕ
pa

instead of γr which is valid for soil

elements subjected to isotropic loading (Hardin & Kalinski 2005).

Furthermore, damping can be written as a function of modulus degradation (Zhang et al.

2005).

η − ηmin = c1(
G

Gmax

)2 − c2
G

Gmax

+ (c2 − c1) (2.16)

where c1 and c2 are constant parameters and ηmin is the minimum damping at small

strain region. Following a review of the literature we can see that a systematic study is

essential to evaluate the effects of stress ratio and stress path on modulus degradation and

damping in granular materials. Furthermore, the empirical relationships must be assessed

to predict the modulus degradation and reference strain (γr) in soil elements subjected

to anisotropic loading.

2.6 Fines content

Previous studies have been mainly confined to either clean sands or gravel. Systematic

studies on transition soils (i.e. clean sand mixed with fine particle, d ≤0.075mm) contain-

ing a wide range of fines content are rare, although transition soils are not uncommon.

A recent example of such transition soil is the many liquefied sites in Christchurch, New

Zealand, due to the Darfield earthquake (2010) where clean sand has almost the same

grain size distribution but is mixed with different percentage of fines content, fc (Green

& Cubrinovski 2010).

The effect of fine particles on sand force structure, from a micro-structure point of view,

was presented by Mitchell (1976) and then simplified by Thevanayagam (1998) for other

mechanical responses of transition soils. When fine particles are sufficiently smaller than

sand particles, all fine particles do not contribute in sand force structure when loaded.

Thus, by neglecting some fine particles in sand force structure, Thevanayagam (1998)

suggested an ”equivalent void ratio”, e∗, instead of e as an appropriate density index (the

concept of e∗ is discussed later). Thevanayagam & Liang (2001) assumed secant modulus

at axial strain of 0.0005 from a triaxial test as Gmax for Foundary Sand with up to 25%

non-plastic fc (fines with PI=0), and reported that the effect of fc can be captured by

replacing e by e∗ in Equation 2.7. However, the process of obtaining e∗, during that time,

was essentially a back analysis process which limits the applicability of Hardin’s relation

(Equation 2.7). Rahman et al. (2012) estimated e∗ from soil grading properties and used
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this in Hardin’s relation to capture the effect of fines for collected data sets. They reported

that e∗ in Equation 2.7 can capture the effect of non-plastic fines. However, collected data

sets were not designed for the evaluation of e∗ to capture the effect of fc on Gmax and the

maximum fc covered was only 20%. Thus, a suitable approach for capturing the effect of

non-plastic fc on Gmax is still a topic of research interest.

From a macroscopic point of view, a systematic study on the effect of fine particles on

Gmax was first presented by Iwasaki & Tatsuoka (1977). Two clean sands, Iruma Z1 and

Iruma W, were mixed with a different percentage of non-plastic fc and resonant column

tests were conducted to assess the effect of fines content (Figure 2.7). With regard to the

experimental results, Iwasaki & Tatsuoka (1977) concluded that the value of Gmax, ob-

tained from resonant column test, decreased with an increase in fc (Figure 2.7). Based on

the bender element tests, Salgado et al. (2000) also reported that Gmax for Ottawa sand

decreased with an increase in non-plastic fc. Tao et al. (2004) performed cyclic torsional

shear tests on thin hollow cylindrical samples to evaluate the effect of fines content on the

stress-strain behaviour of sands obtained from the San Fernando dam. From the experi-

mental results, they observed that Gmax decreased with an increase in the non-plastic fc

up to 28% and then Gmax increased with fc of more than 28% (Figure 2.7). Chien & Oh

(2002) conducted a series of resonant column test on Yun-Ling sand. They observed that

Gmax increased with fc up to fc of 20% and then it decreased with further increase of fc.

Carraro et al. (2009) performed a series of tests with sands containing fines content using

bender elements installed in the triaxial device. They reported that the effect of non-

plastic fc on Gmax is more than plastic fc and there was a general trend of decreasing

Gmax with non-plastic fc. Wichtmann et al. (2015) performed a series of RC tests on

a sand containing limited amount of fines content (fc < 20%). They found that Gmax

decreases and damping ratio increases with an increase in fines content but their study

was limited to the fines content of less than 20%.

Some efforts have been observed to capture the effects of non-plastic fc within the frame-

work of Hardin’s relationship (Equation 2.7). Salgado et al. (2000) suggested that constant

parameters, A and n, in Hardin’s relationship might be affected by fc. Iwasaki & Tat-

suoka (1977) reported that parameter A was affected by fc while other parameters remain

constant. Therefore, They proposed a reduction factor for Hardin’s relationship.
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Figure 2.7: The effect of fines content on maximum shear modulus, Gmax

However, the variation of reduction factor with fc are different for different host sands

with fines (Figure 2.7). Wichtmann et al. (2015) correlated the fitting parameters of

Hardin’s relationship to fc.

In this research the resonant column test will be conducted on clean Hostun Sand as well as

on clean Hostun Sand containing non-plastic fines, to find the effect of wide range of fines

content on small and intermediate strain properties of granular materials. Furthermore,

the relative performance of Hardin’s formulation (Equation 2.7) with the concept of the

equivalent granular void ratio, e∗, will be discussed.

2.7 Sample preparation and fabric

Granular materials consist of discrete particles and voids between particles. Therefore,

the response of such a discrete medium highly depends on the particle characteristics, e.g.

stiffness, shape and angularity, contact characteristics and the arrangement of particles

and contacts in assembly. Practically, soil structures, natural or man-made, are influenced

by the generation procedure and gravitational field which induce an anisotropic fabric.

During the deposition of soil particles, particles tend to be oriented in some preferred

directions, initial inherent anisotropy in the soil structure, which eventually affects the
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engineering properties of granular soils. The term fabric refers to the arrangement of par-

ticles, particle groups and pore spaces in a soil (Mitchell & Soga 2005). It is reasonable

to assume that different sample preparation methods produce different soil fabrics and

the macroscopic behaviour of granular material (i.e. stiffness and anisotropy) strongly

depends on the fabric of granular assemblies (Oda 1972). Oda (1972) studied the effect of

initial fabric, with different sample preparation, on the shear strength of two materials:

1- elongated particles and 2- spherical particles. They did triaxial tests on the prepared

samples and observed that the effect of sample preparation on the peak stress ratio of

the sample containing spherical particles was not obvious, however, a significant effect

was observed for samples containing elongated particles which was due to the contact

and particle orientation. Mahmood & Mitchell (1974) performed tests using direct shear

test to show the effect of fabric on the shear strength of fine granular materials. They

showed that grain arrangement and pore size distributions are different when samples are

deposited in different ways. Tatsuoka et al. (1986) studied the effect of sample prepara-

tion on the cyclic undrained stress-strain behaviour of sand using triaxial and torsional

shear tests. They prepared samples using four methods: air-pluviation, wet-tamping, wet-

vibration and water-vibration. They reported that the cyclic undrained torsional shear

strengths and cyclic undrained triaxial strengths were strongly affected by sample prepa-

ration methods. Vaid et al. (1999) performed a series of triaxial and direct shear tests on

the Fraser River sand samples provided with different sample preparation. Samples were

prepared by moist tamping, air pluviation, and water pluviation. From their experimental

observations, they concluded that the sample preparation has a significant influence on the

static undrained behavior of Fraser River sand. Wang & Mok (2008) performed a series

of tests on Toyoura sand and rice particles using true triaxial device. From experimental

observations, they concluded that the fabric-induced stiffness anisotropy increases with

an increase in the aspect ratios of particles, which is the length ratio between the major

and minor axes. Ezaoui & Di Benedetto (2009) studied the effect of sample preparation

on the maximum moduli of Hostun sand using piezoelectric elements that were installed

in the triaxial device. They prepared samples using three methods: i) pluviation method,

ii) vibration method and iii) tamping method. They reported that the samples prepared

by pluviation and vibration had a higher stiffness in the horizontal direction, whereas

samples prepared by tamping induced higher stiffness in the vertical direction.

Juneja & Raghunandan (2011) conducted a series of consolidated drained (CD) and con-

solidated undrained (CU) triaxial compression tests on sand samples prepared using plu-

viation and tamping techniques, under both dry and moist conditions. They reported

that the stress-strain behaviour of samples prepared with various methods showed con-
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siderable difference in peak stress and dilation.

DEM simulations also indicate that initial anisotropic conditions have a great influence

on the strength and deformation of granular assemblies (Ng 2004, Magnanimo et al. 2008,

Azéma et al. 2009 and Hosseininia 2012).

Therefore, particle alignment has a significant effect on the mechanical properties of gran-

ular assemblies. This causes a significant difference in the magnitude of contact forces for

the two directions. As a result, the anisotropy in contact area and contact force causes

anisotropic effects on Gmax. The effect of sample preparation on the coordination number

and the stiffness of granular assembly will be discussed using DEM simulations in this

study.

2.8 Stress induced anisotropy

It is well-known that the stiffness of geo-materials depends on the state of stress in the soil

elements. Hardin & Black (1966) studied the influence of the stress ratio on the maximum

shear modulus of dry sand using a resonant column device. From experimental studies,

Hardin & Black (1966) concluded that the shear modulus is independent of the deviatoric

component of the initial stress state. Also, they concluded that Hardin’s relationship with

sufficient accuracy can be used to predict the maximum shear modulus of soil elements

subjected to anisotropic loading. Drnevich (1978) studied the influence of initial shear

stress on the maximum shear modulus and damping of dry Ottawa Sand with the RC

device and reported that the impact of initial shear stress on the maximum shear modulus

is small. Also, they concluded that damping increases with the initial shear stress but

the increase in damping is not significant. Tatsuoka et al. (1979) performed a series of

cyclic torsional tests to evaluate the impact of static stress conditions on the small strain

properties of Toyoura Sand using a torsional shear device. From their experimental results

they concluded that the impact of extension loading on the maximum shear modulus is

more remarkable than compression loading and they also concluded that the impact of the

stress ratio and initial shear stress on the damping ratio is not significant. Yu & Richart

(1984) studied the impact of the stress ratio on the maximum shear modulus of Brazil

Sand and Ottawa Sand using a resonant column device. Yu & Richart (1984) concluded

that Gmax can be affected by shear stress at a stress ratio of more than two.

After these studies, Isenhower et al. (1987) modified Stokoe resonant column device to

perform stress induced anisotropic tests. Santamarina & Cascante (1996) studied the

effect of stress induced anisotropy on shear wave velocity in Barco Sand with the modified
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Stokoe resonant column device. However, their study was restricted to a stress ratio of less

than two. Santamarina & Cascante (1996) reported that wave velocity will increase with

an increase in the stress ratio but the effect of stress ratio on ηmin is not significant. All

of the previous works to evaluate the effect of stress induced anisotropy on the maximum

shear modulus were conducted on dense samples.

By reviewing the literature, systematic studies on the effect of stress induced anisotropy

on the intermediate strain properties of granular material are rare, and we can refer to the

study by Tatsuoka et al. (1979). They studied the effect of induced anisotropy on damping

ratio and shear modulus on one stress path with a dense sample and reported that the

impact of stress ratio on damping is not significant. However, their study was restricted

to the stress path with a constant confining pressure on a dense sample. However, soil

elements can be subjected to more complicated stress conditions in comparison with the

stress conditions applied in the existing studies on intermediate strain properties up to

now. Therefore, a major objective of this research work is to find the effect of stress

induced anisotropy for different stress paths and density of sample on the small, and

especially intermediate strain properties of sand. The resonant column device at Ruhr

Universität Bochum was modified for performing such studies.
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2.9 Summary

• The small strain properties of geomaterials can be explained by stress-strain hys-

teresis loops. Maximum shear modulus, Gmax, shear modulus as a function of

shear strain, G(γ) and damping ratio, η, are the main parameters which control the

response of the soil elements subjected to vibration. They are also the key parame-

ters in soil-structure interaction problems with small deformations under rapid and

repetitive loads.

• The effect of fc on Gmax and η(γ) must be evaluated with a systematic increase of fc.

Application of the equivalent granular void ratio to predict the small strain stiffness

of granular material must be studied. The data sets collected from the literature

were limited to the maximum 20% fc. Thus, a suitable approach for capturing the

effect of a wide range of fc on Gmax and η(γ), beyond threshold fines content, is still

a topic of research interest.

• Studies on the effect of stress induced anisotropy on the small and intermediate

strain properties can be divided into two main groups: 1-studies on the small strain

properties (Gmax), and 2- studies on intermediate strain properties (G(γ) and η(γ)).

Concerning 1: As is apparent from the literature review, numerous experimental

studies have been conducted by piezoelectric elements for evaluating the effect of

induced anisotropy on Gmax (small strain properties) of granular materials, but some

of them (e.g. Hardin & Black 1966, Tatsuoka et al. 1979, Yu & Richart 1984 and

Santamarina & Cascante 1996) used the resonant column device and they concluded

that at a stress ratio of less than two, the effect of stress induced anisotropy on Gmax

is not significant but these studies were restricted to dense samples.

Concerning 2: From the literature review we can see that studies on the effect of

induced anisotropy on the intermediate strain properties of granular material are

rare, and we can refer to the study by Tatsuoka et al. (1979). They studied the ef-

fect of induced anisotropy on damping ratio and shear modulus for one stress path

(confining pressure constant and vertical pressure variable) on dense samples and

reported that the impact of the stress ratio on damping is not significant. However,

soil elements can be subjected to more complicated stress conditions in compari-

son to the stress conditions applied in the studies conducted on intermediate strain

properties up to now. Therefore, additional studies are essential to assess the effect

of stress induced anisotropy for different stress paths on the small, and especially
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intermediate strain properties of sand. Furthermore, the empirical relations must

be developed to predict G(γ) of soil samples subjected to stress induced anisotropy

for different stress paths.



3 Material and experimental program

3.1 Introduction

The adopted experimental program to assess the influence of fines content and stress in-

duced anisotropy on the small and intermediate strain properties of granular materials

will be presented in this chapter. This chapter has three main objective: Firstly, the phys-

ical and mechanical properties of adopted materials are discussed. Hostun sand and glass

beads are introduced as host and main materials used in this study. Also, two mixtures,

Hostun Sand containing quartz powder and glass beads containing fine glass beads, are

introduced as a mixture to study the effect of fines content. Secondly, the apparatus used

for the experimental study is introduced. Before performing tests, calibration and valida-

tion of the apparatus are essential. Therefore, the numerical, theoretical and experimental

procedures for the calibration and validation of the apparatus are discussed. The effect

of vertical load on the dynamic behaviour of the system (resonant column device) will be

examined with the numerical modeling of the device. Finally, the experimental procedure

for performing the isotropic and stress induced anisotropic tests will be presented.

3.2 Materials

Two types of materials were used in this research: 1) Hostun Sand; and 2) glass beads.

Both of the materials were adopted as host materials for studying the effect of fines

and stress induced anisotropy on small and intermediate strain properties. The physical

properties of these materials are presented in the following sections.

31
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3.2.1 Hostun Sand

The main experimental program for this study was conducted on Hostun Sand which

has been used in the previous studies (Flavigny et al. 1990, Schanz & Vermeer 1996 and

Sadek 2006). The color of Hostun Sand ranges between gray-white and rosy-beige, while

its chemical components consist of a large amount of siliceous, SiO2 > 98%, (Amat 2007).

Hostun Sand is a quartz sand with grain sizes ranging from 0.1 mm to 1.0 mm. Figure

3.1a shows the microscopic image of particles. The grain shape varies from angular to sub-

angular. According to the USCS classification, the material is a poorly-graded medium

sand SP (Lins 2009). The values of the maximum and minimum void ratios, emax and

emin, of Hostun Sand were measured using DIN 16126 and the results are summarized in

Table 3.1.

A particle size distribution analysis was carried out using DIN 18123 standard. Figure

3.1b shows the particle size distribution of Hostun Sand.

The stress-strain behaviour of Hostun Sand was essential for the discussion of the ob-

served experimental results using the resonant column device. Hence, triaxial tests were

conducted at the confining pressure of 200 kPa, σ3=200 kPa, on dense (Dr = 90%) and

loose (Dr = 35%) samples. The initial conditions in triaxial tests were the same as the

conditions for the samples in resonant column tests. The stress-strain curve and volu-

metric changes of dense and loose Hostun Sand are presented in Figure 3.2a and Figure

3.2b.
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Figure 3.1: Particle characteristics of Hostun Sand: (a) shape of particles; (b) grain size

distribution
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Figure 3.2: Triaxial behaviour of dry Hostun Sand at the confining pressure of 200 kPa,

σ3=200 kPa,: (a) vertical stress versus vertical strain for loose and dense samples; (b)

volumetric strain versus vertical strain for loose and dense samples

These figures show the well-known behaviour of dense and loose sand by increasing the

vertical strain. Figure 3.2a shows the samples reach the critical state zone at vertical

strain of more than 15%. Also, the results in Figure 3.2b show that the dense sample

dilated at the vertical strain by more than 1.5% and the loose sample compacted with an

increase in the vertical strain.

3.2.2 Glass beads

Spherical glass particles with a diameter of 1.25 mm were used as the second host material

for studying the effect of fine particles and stress induced anisotropy on small and inter-

mediate strain properties. The SEM photographs, scanning electron microscope, of glass

beads are shown in Figure 3.3. The stress-strain behaviour of the adopted glass beads

were essential for the calibration and validation of the prepared model in DEM simulation

and the stress-strain results were also essential for interpretation of the test results from

the resonant column test. Discrete element simulations and resonant column tests were

conducted on the dense glass bead samples. Therefore, triaxial tests were conducted on

the dense glass bead packing (Dr = 88%) at the confining pressure of 200 kPa, σ3=200

kPa, for calibration of the DEM model. Figure 3.4 shows the behaviour of the dense glass

bead packing obtained from the triaxial test. Figure 3.4a demonstrates that the vertical

stress in the dense sample reached the maximum value at a vertical strain of less than
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2% and dilation occured at a vertical strain of more than 0.6% (Figure 3.4b). The other

physical properties of the adopted glass particles are summarized in Table 3.2.

(a) (b)

Figure 3.3: Particle characteristics of glass beads: (a) coarse particles, D=1.25 mm; (b)

fine particles, d=0.125 mm
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Figure 3.4: Triaxial behaviour of dry dense glass beads (Dr = 88%) at the confining

pressure of 200 kPa, σ3=200 kPa,: (a) vertical stress versus vertical strain; (b) volumetric

strain versus vertical strain
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3.3 Mixtures

Two types of mixture were used in this study: 1) Hostun Sand mixed with fine quartz

powder 2) glass beads mixed with glass fines particles which are discussed in this section.

3.3.1 Hostun Sand and quartz powder

Hostun Sand was washed to separate the particles with a diameter of less than 0.075 mm,

so-called clean Hostun Sand. Clean Hostun Sand was mixed with 0, 5, 10, 20, 30 and 40

gravimetric percentages of non-plastic fines. The adopted non-plastic fines were a com-

mercial quartz powder (M500), composed of 99% SiO2, from the Euro-quartz company.

Before performing tests with the prepared mixtures, the maximum and minimum void

ratio of the mixtures must be determined. There is no applicable ASTM procedure to

determine the maximum and minimum void ratios of soils with 15% or more fines content

(Tao et al. 2004) which is due to the segregation of particles during pluviation. However,

the ASTM standard has been used to detemine the maximum and minimum void ratio for

coarse materials containing more than 15% fines in previous works (e.g. Tao et al. 2004).

In this research, the procedure adopted to determine the variation of emax and emin with

the systematic increase of fines content was the same as the procedure presented in DIN

18126. Regarding this standard, the value of emax was determined by placing the standard

funnel at the bottom of the standard mold. Then, the funnel was raised slowly without

dropping the particles which reduces particles segregation. To determine the value of emin

the sample, from the emax test, was devided into five equal layers. After placing each layer

inside the mold, the mold was tapped uniformly with a standard hammer. The variation

of emax and emin for Hostun Sand with different percentages of fc and the other physical

properties of the mixtures are summarized in Table 3.1.

Table 3.1: The physical properties of Hostun Sand-quartz powder mixtures

Soil emax emin γdmin γdmax Gs D50 D10

[-] [-] [ g
cm3 ] [ g

cm3 ] [-] [mm] [mm]

Clean Hostun sand 1.023 0.671 1.310 1.586 2.65 0.385 0.211

CHS+5%fc 1.097 0.642 1.264 1.614 2.65 0.380 0.172

CHS+10%fc 1.219 0.635 1.194 1.624 2.65 0.379 0.082

CHS+20%fc 1.501 0.624 1.072 1.630 2.65 0.337 0.004

CHS+30%fc 1.739 0.682 0.968 1.575 2.65 0.324 0.003

CHS+40%fc 1.925 0.791 0.906 1.479 2.65 0.266 0.002
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Table 3.2: The physical properties of glass bead-glass bead mixtures

fc emax emin γdmin γdmax Gs

[%] [-] [-] [ g
cm3 ] [ g

cm3 ] [-]

0 0.6851 0.5616 1.4836 1.5908 2.50

10 0.5706 0.4356 1.5817 1.7414 2.50

20 0.47 0.3399 1.667 1.8659 2.50

30 0.3849 0.2698 1.7423 1.9369 2.50

40 0.3973 0.2767 1.734 1.9336 2.50

50 0.4225 0.3064 1.7224 1.9284 2.50

The test results show the emin decreased up to fines content of 20% and then increased

with further increases of fc. The fc, that is the boundary between the ”fines-in-sand”

and ”sand-in-fines” micro-structure, is called the threshold fines content, fthr (Rahman

& Lo 2008). Regarding the emin analysis, the value of fthr is the fines content that emin

starts to increase with further increases in fines content (Naeini & Baziar 2004 and Zuo

& Baudet 2015). From Table 3.1, the value fthr should be in between 20% and 30% for

Hostun Sand mixed with quartz powder which was assumed to be 25% for this study.

3.3.2 Glass bead mixtures

Coarse glass beads (D=1.25 mm) were mixed with 0, 10, 20, 30, 40 and 50 gravimet-

ric percentages of spherical fine glass beads (d=0.125 mm, Figure 3.3b). The values of

emax and emin was determined for all of the mixtures, the procedure was the same as the

adopted procedure for the Hostun Sand mixtures. The variations of emax and emin for the

glass bead mixtures are summarized in Table 3.2. The results show that the value of emin

decreased up to 31% fc and then increased with a further increase of fc.

3.4 Sample preparation

Dry funnel deposition and the air pluviation method are two common methods for sample

preparation. In the air pluviation method, dry sands are pluviated through a diffuser

from a constant height and thus may not be suitable for sand with more than 15% fc,

due to particle segregation. In the dry deposition method, the specimens were prepared
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by placing the funnel at the bottom of the mold. Then the material were placed inside

the funnel and the funnel was raised slowly which reduced particle segregation. The

mold was tapped in a symmetrical pattern to achieve a dense specimen. This technique

was commonly used for testing silty sands by Ishihara (1993), Lade & Yamamuro (1997),

Yamamuro & Lade (1997) and Monkul & Yamamuro (2011). Therefore, the dry deposition

method, which gives the most uniform specimen compared to pluviation for mixtures, was

used for the sample preparation in this study.

3.5 Apparatus

3.5.1 Description of equipment

Resonant column and piezoelectric elements are two common laboratory devices for mea-

suring the small and intermediate strain properties of geo-materials. The piezoelectric

elements are mounted in the different laboratory devices to measure the maximum shear

modulus at a low amplitude of vibration (e.g. Jovicic & Coop 1988, Kuwano et al. 2000,

Kuwano & Jardine 2004 and Wang & Mok 2008). These elements are also applicable

when determining the modulus reduction curves and damping ratio of soils (e.g. Karl

et al. 2008, Choo et al. 2013) although it is not a standard procedure.

Besides the piezoelectric elements, the resonant column device is one of the standard

methods (ASTM D-4015) for measuring small and intermediate strain properties. The

resonant column technique is based on the oscillation of the cylindrical sample on one of

its vibration modes, flexural mode (Cascante et al. 1998), normal mode (Saxena & Reddy

1989) and torsional mode (a common type of resonant column), to determine the resonant

frequency of a sample.

The torsional resonant column device is the common type of resonant column. The tor-

sional resonant column device was initially adopted by Iida (1937), a Japanese researcher,

to evaluate the influence of water content on wave velocity (Figure 3.5a). This device was

developed in the last few decades, e.g. Hardin & Black (1966), Hardin & Drnevich (1972b),

Hardin & Drnevich (1972a), Drnevich (1978) and Stokoe et al. (1999a), for studying the

small strain properties of soils (Figure 3.5b). The torsional resonant column device is

divided into two groups, free-free and fix-free resonant column devices which are appro-

priate for determining the mechanical properties of soils with a wide range of strain, from

a very small strain to medium strain (Figure 1.3).
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(a)

 

 

(b)

Figure 3.5: The resonant column device: (a) by Iida (1937); (b) the common type, Stokoe

resonant column (Bai 2011)

In free-free resonant column device, the actuator is mounted on the top or bottom of the

sample whereas the other end is free in rotation. In the fix-free resonant column device,

one side of the sample is constrained against rotation and the other side is free in rotation

(Drnevich resonant column and Stokoe resonant column). The resonant column device

at Ruhr-Universität Bochum (Figure 3.6) was designed so that the polar mass moment of

inertia in bottom part (J0) is about 17.2 times the polar mass moment of inertia in the

top part (JL), (J0/JL = 17.2). Thus, this device can be categorized in a free-free resonant

column device group and relationships must be developed based on the free-free boundary

conditions. Regarding the boundary conditions of the Bochum resonant column device,

the Equation 3.1 and Equation 3.2 are applicable for determining the maximum shear

modulus of materials (Richart et al. 1970 and Wichtmann et al. 2001).

atan(a)− J2

J0JL

tan(a)

a
=

J

J0

+
J

JL
(3.1)

G =

(
2πLfr
a

)2

ρ (3.2)

where, a is ωL/vs, ω is the rotational frequency, vs is the wave velocity, J0 and JL are

the polar mass moment of inertia for the bottom and top parts of the resonant column, J

is the polar mass moment of inertia for the sample, ρ is the density of the sample, fr, is

the resonant frequency and L is the height of the sample. By assuming the infinite value

for J0 in Equation 3.1, the relationship will be the same as the proposed relationship for

the fix-free resonant column device. The top part of the Bochum resonant column device

(Figure 3.7a) includes two mini-shakers for applying a rotational excitation at the top
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of the sample. Two transducers (accelerometers) were mounted on the mini-shakers and

the actuator were used for monitoring the signals (Pkk1 and Pkk2, Figure 3.7a) using

oscilloscope device. Phase difference between the signals received from the mini-shakers

and displacement transducers (Pkk1 and Pkk2) must be π/2 at the resonant frequency.

Figure 3.6: The torsional resonant column device at Ruhr Universität Bochum

Pkk1
Pkk2

(a) (b)

Figure 3.7: The Bochum resonant column device: (a) the actuator or top part of the

Bochum resonant column device; (b) top view of assembled device
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According to Equation 3.1 and Equation 3.2, three constant values (JL, J0 and J) are

key parameters for determining Gmax with the resonant column device. To increase the

accuracy of the results, these values must be determined accurately.

The bottom part of the Bochum resonant column device and the sample have a cylindrical

shape with a given density and dimensions, thus the polar mass moment of inertia (J0

and J) of these parts can be determined using geometric relations. The top part of the

Bochum resonant column device (Figure 3.7a) has a complex shape, including electrical

equipment, cables and holes, thus the polar mass moment of inertia for this part (JL)

can not be determined accurately with geometric methods. Hence, experimental methods

must be used to determine the value of JL. By a simple experimental procedure the

value of JL can be calculated. With this method, the shear modulus of the aluminum

sample (G) was assumed to be a value between 24 and 27 GPa, and then, the resonant

frequency of the aluminum sample is measured using the resonant column device. Hence,

the parameter a can be determined by substituting the shear modulus and the measured

resonant frequency in Equation 3.2. The mass moment of inertia for the top part (JL) can

be calculated by substituting the determined values for a, J and J0 in Equation 3.1. In

this study, the stiffness of aluminum (G) was an unknown value, thus G was assumed to be

25 GPa. Therefore, this experimental method includes an error because of the stiffness of

the aluminum sample. Another experimental method, which is independent of the shear

modulus (G) of the aluminum sample, was used to determine the value of JL with a high

degree of accuracy. The experimental method developed by Tatsuoka & Silver (1980) for

the fix-free resonant column device was employed for determining the value of JL in the

free-free resonant column device. In this experimental method, an extra mass with given

density and geometry was used to determine the value of JL. The extra mass was placed

on the top of the actuator and the resonant column tests were conducted for both of the

conditions (with and without extra mass). By rewriting Equation 3.1 and Equation 3.2,

three unknown values: a, b and JL were defined.

a tan(a)− J2

J0JL

tan(a)

a
=

J

J0

+
J

JL
(3.3)

b tan(b)− J2

J0(JL + Jmass)

tan(b)

b
=

J

J0

+
J

(JL + Jmass)
(3.4)

a

b
=
fr1

fr2

(3.5)

where, fr1 is the resonant frequency of the aluminum sample without the extra mass and

fr2 is the resonant frequency of the aluminum sample with the extra mass. According to

the dimension of the sample (2 cm in diameter and 30 cm in height), the mass moment
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of inertia of the sample (J) was about 1.2723E − 5 kg.m2. Also, the value of J0 could be

determined by the geometric method and was 1.171415 kg.m2. The resonant frequency

of the aluminum sample without the extra mass was determined by a resonant column

test which was 22.82 Hz (fr1). The extra mass with a given mass moment of inertia

(Jmass=0.0148 kg.m2) was placed on the top of the actuator and the resonant frequency

of the aluminum sample was measured (fr2) which was 20.71 Hz. By substituting the mea-

sured resonant frequencies in Equation 3.5, the value of b will be equal to ka = 0.9075a.

Therefore, Equation 3.3, Equation 3.4 and Equation 3.5 were reduced to Equation 3.6

and Equation 3.7 with two unknown parameters (a and JL).

F (a, JL) = a tan(a)− J2

J0JL

tan(a)

a
− J

J0

− J

JL
= 0 (3.6)

G(a, JL) = ka tan(ka)− J2

J0(JL + Jmass)

tan(ka)

ka
− J

J0

− J

(JL + Jmass)
= 0 (3.7)

where, k, J , J0 and Jmass are equal to 0.9075, 1.2723E − 5 kg.m2, 1.171415 kg.m2 and

0.0148 kg.m2 respectively. From the performed calculations, JL is equal to 0.0647 kg.m2.

The value of JL was also calculated with the geometric method and its value with geo-

metric relations was about 0.0659 kg.m2 but the JL from the experimental method was

used in all of the tests with the resonant column device on the soil samples.

3.5.2 Mode of vibration

Two types of rotational modes may be achieved during the test with the free-free resonant

column: 1- actual rotational mode; and 2- spurious rotational mode (defined by Avramidis

& Saxena 1990). The actual rotational mode is achieved when there is an phase difference

between the top and bottom of the sample during the rotational excitation of the sample.

The other one, spurious or fake mode, is achieved when the top and bottom of the sample

have the same rotational phase during the RC test to avoid this mode of vibration mass

moment of inertia of free side (J0 in Bochum RC) must be increased or samples with less

stiffness must be used. The rotational mode of vibration must be distinguished during

isotropic and anisotropic tests with the resonant column device. Two accelerometers were

installed on the rotatable bottom part of the resonant column device, Acc.2, (Figure

3.8a) to determine the type of rotational mode, actual or spurious. The received signals

from the accelerometers, Acc.1 and Acc.2, were monitored and compared with each other

during the resonant column test.
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Figure 3.8: Rotational mode of vibration in the Bochum resonant column: (a) schematic

sketch of the RC device; (b) received signals from top and bottom of the sample
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Figure 3.9: Frequency of rotational vibration: (a) frequency of actual vibration; (b) reso-

nant frequency of actual vibration

Due to the shape of actuator, additional mode of vibration cloud be achieved during tests

with the Bochum resonant column device which is called flexural or bending mode of

vibration. This mode of vibration was monitored using Acc.3 which was mounted in one

side of the actuator (Figure 3.8a). The received signals from Acc.3 showed that the am-

plitude of signals were not significant in comparison with the applied torsional vibration.

This means that the flexural mode of vibration can be ignored during tests using the
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Bochum resonant column device.

Figure 3.8b shows an example of the signals received from Acc.1 and Acc.2. Figure 3.8b

shows an example of the applied signals at the top of the sample in comparison with the

received signals from the bottom of the sample. As can be seen in this figure, when the

peak value of the signals applied to the top of the sample (Acc.1) was 0.97v, the peak

amplitude of the signals received from the bottom was about 0.38v which means the bot-

tom of the sample is free in rotation. Furthermore, Figure 3.8b shows a π phase difference

between the received signals which is due to the direction of the installed accelerometers

at the top and bottom of the RC (both of them are in the same direction).

The obtained results show that the bottom and top of the sample rotate at different

phases. The resonant frequency will be determined for the actual rotational mode of

excitation. This frequency is achieved when the phase difference between Pkk1 and Pkk2

signals is π/2 (Figure 3.9b). For ease of determining the resonant frequency, Pkk2 was

drawn versus Pkk1 (Figure 3.9a) on the oscilloscope device. Then the frequency of the

applied signal was changed to get the resonant frequency; at the resonant frequency the

generated ellipse shape must be vertical (Figure 3.9b).

3.5.3 Modification and calibration of apparatus

3.5.3.1 Loading system

The actuator of the Bochum resonant column device is the cubic part which includes

the electrical equipment (Figure 3.6). To apply additional vertical stress inside of the

sample, the actuator was loaded in a vertical direction using a double acting pressure

cylinder added by APS Wille Geotechnik GmbH, Götingen, (Figure 3.10). The load of

the cylinder was transferred with a loading bar, a hardened steel tip, to the hardened steel

plate which was mounted at the central axis of the actuator and sample (Figure 3.10).

Firstly, the relationship between pressure p and the generated force in the loading bar, F ,

must be determined. The calibrated load cell was used to determine the value of F with

systematic increase of p in double acting pressure cylinder.

Figure 3.11 shows the relationship between the applied pressure, p, and F in the loading

bar. In this calibration, p0 was assumed to be constant and equal to 50 kpa. The value

of p0 was applied to improve the motion of the loading bar during the unloading process.

Then, the effect of cell pressure (σ3) on the value of F must be calculated (Figure 3.10b).

As can be seen in Figure 3.10b, cell pressure has both a negative and positive effect on

the magnitude of F in the loading bar which must be assessed.
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Figure 3.10: Instrumentation for applying vertical load: (a) schematic sketch of double

acting pressure device and loading bar; (b) the effect of cell pressure on loading bar
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Fig.1: Adopted stress paths in the resonant column tests with glass beadsFigure 3.11: Calibration of double acting pressure cylinder, p0=50 kPa
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The effect of cell pressure on the vertical load, F , was calculated by writing the equilibrium

relationship in a vertical direction (Equation 3.8).

Fv = F + A1(σ3)− A2(σ3) (3.8)

Where, A1 and A2 are equal to 2.155 cm2 and 5.02 cm2 respectively. From the equilibrium

relation, the value of Fv was a function of cell pressure.

Finally, the influence of the loading equipment on the dynamic behaviour of the sys-

tem (bottom mass, sample and actuator) and its interaction with the actuator must be

assessed. Therefore, the finite element method, ABAQUS software, and experimental

methods, using aluminum samples, were used for this assessment.

3.5.3.2 The effect of the loading bar

Damping ratio in aluminum specimens is approximately zero (Zemanek & Rudnick 1961).

Therefore, the resonant frequency of aluminum samples is approximately equal to the

natural frequency which allows modeling of the resonant column device with the aluminum

sample in ABAQUS software. This type of analysis was helpful to evaluate the effect of

loading and interaction between the loading bar and the actuator on the natural frequency

of the aluminum sample and the dynamic behaviour of system. A numerical model was

developed to analyze the behavior of the RC device without a vertical loading system.

After validation of the model, the numerical model was extended to analyze the influence

of the vertical loading system on the behaviour of the RC device. In the numerical model,

the RC device was idealized into three main parts: actuator, sample and bottom part.

The geometries of these parts were modeled the same as the real device (Figure 3.12). All

of the connections, e.g. connections between the actuator and the top of the sample, and

the bottom part of the device and sample, were assumed to be rigid connections. Material

properties of the modeled parts were the same as the real device in the laboratory (the

actuator and the sample was made of aluminum and the rotatable bottom part was made

of steel). The top part of the modeled device was free for displacement or rotation but

the bottom part of the system was constrained against displacement and it was free in

rotation only, the same as the boundary conditions of the device in the laboratory.

For validation of the model, the frequency analyses were conducted to determine the

natural frequency of the aluminum samples with a diameter of 2, 4 and 6 cm and 30

cm height. Two types of rotational frequencies were achieved from the numerical model,

actual and spurious frequency (Figure 3.12a and Figure 3.12b). As is apparent from

Figure 3.12a, the top and bottom of the model have the same colour. This means the
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top and bottom of the model have the same rotational phase. In this case the rotational

frequency is the so-called spurious frequency. However, Figure 3.12a shows the actual

mode of vibration and this frequency is used to determine the shear stiffness. Therefore,

the obtained actual frequencies from the numerical model for aluminum samples were

extracted and presented in Tables 3.3 and 3.4. Table 3.3 shows the measured frequencies of

aluminum samples without vertical loading which was calculated with different methods.

The results confirm a good agreement between frequencies calculated by the numerical

model and measured values using the resonant column device (Table 3.3).

(a) (b)

Figure 3.12: The obtained rotational frequencies for aluminum sample No.4 from numer-

ical analysis: (a) actual mode of vibration; (b) spurious mode of vibration

Table 3.3: The measured resonant frequencies for the aluminum samples with various

methods, without vertical load

Specimen RC test Theory Modeled

Equations 3.1 and 3.2 in ABAQUS

t [cm] fr [Hz] fr [Hz] fr [Hz]

2 22.82 23.43 23.371

4 92.41 93.45 91.707

6 182.95 209.86 198.523
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Table 3.4: The measured resonant frequency for the aluminum sample using the numerical

method, with vertical load

Specimen Diameter of Vertical Modeled in Effect of

contact area ABAQUS loading bar

t [cm] s [cm] Fv [N] fr [Hz] ∆1 [%]

4 1
0 133.45 45.52%

4000 139.23 51.82%

4 0.2
0 91.791 0.31%

4000 92.078 0.40%

4 0.1
0 91.713 0.045%

4000 91.754 0.05%

After validation of the numerical model, the effect of the vertical load on the dynamic

behaviour of system was considered. For approaching to this aim, additional modification

was applied to the prepared numerical model to evaluate the effect of the loading bar. A

rigid cylindrical element was defined as a loading bar in the FEM model. The loading

bar, in FEM model, was constrained in all of the directions but it was free in the vertical

displacement. One step was defined before the frequency analysis step to develop the effect

of the vertical load on the obtained frequency from the modeled device. The mechanical

changes like loading and friction interaction between the loading bar and the actuator were

defined in this step of analysis and their effects were observed during frequency analysis

in the second step. The effect of two main variables on the response of the system during

loading were studied: 1- the effect of the diameter of connection, s, between the loading

bar and the actuator (s was equal to 1, 0.2 and 0.1 cm); and 2- the effect of the vertical

load, Fv, which was equal to 0 and 4000 N. In all of the analyses the fiction coefficient

between the loading bar and the actuator was assigned as a smooth steel-steel friction

coefficient (assumed 0.3). The results of the FEM analysis are summarized in Table 3.4.

For ease of discussion, the frequency of aluminum sample (t = 4cm) without the vertical

load (Table 3.3) was assumed to be a reference value. Table 3.4 shows that the frequency

of the aluminum sample increases by 45.52% with increase in the diameter of connection,

s, to 1cm which is due to the friction between the loading bar and actuator. By increasing

the vertical load from 0 to 4000 N, the frequency increased by 51.82% which is due to

the increase in the friction and, consequently, the generated resistance moment between

the loading bar and the actuator. Table 3.4 shows that by decreasing the connection area

from 1 to 0.1 cm the natural frequency of the aluminum sample increases by 0.045% in

comparsion with the reference value and by increasing the vertical load from 0 to 4000 N,
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the natural frequency increases by 0.05%. This means the effect of the loading bar and

the vertical load on the response of the device decreases with an decrease in the resistance

moment in the connection area. The variations of ∆1 in Table 3.4 show that the effect of

the vertical load on the dynamic behaviour of the device decreases with a decrease in the

connection area (s) and generated resistence moment. Therefore, the rotational frequency

of the aluminum sample was affected by the generated resistance moment at contact point

which was due to the frictional interaction between the loading bar and actuator. This

resistance moment can be reduced by minimizing the contact area and decreasing the

friction between the loading bar and actuator. According to this argument, the effect of

point loading (loaded on central axis of device) on the rotational mechanism of device

can be neglected. For decrease the friction in the connection area, the diameter of the

connection area between the loading bar and the top cap of the resonant column device

was decreased to less than 1 mm and also a smooth steel plate with a high stiffness and

the minimum friction coefficient was added to the top of the actuator.

3.5.4 Validation of modified apparatus

3.5.4.1 Validation with the aluminum sample

Aluminum samples with diameters of 2, 4 and 6 cm and 30 cm in height (defined as

samples No.2, No.4 and No.6) were used to control the compliance (defined by Clayton

et al. 2009) of the resonant column device. Three methods were used to determine the

resonant frequency of the aluminum samples. In method one, the aluminum samples

were mounted in the resonant column device and the resonant frequency of the aluminum

samples and, consequently, the stiffness of the samples were determined. In the second

method, so-called theoretical method, the stiffness of aluminum samples was assumed 25

GPa and the resonant frequency of the samples was determined using Equation 3.1 and

Equation 3.2. In the third method, the finite element model was used to determine the

frequency of the samples (as discussed above). The calculated resonant frequencies for the

aluminum samples with these methods are summarized in Table 3.3. As can be seen in

Table 3.3, error of the device for sample No.2, in comparison with the theoretical method,

is more than error of the device for aluminum sample No.4. This difference is due to the

compliance of the sample, because the stem of sample No.2 in comparison with its length

is so thin, therefore rotational signals may be affected by flexural signals during tests with

this sample. As can be seen in Table 3.3, a significant error was obtained for sample No.6,

which was due to the type of rotational mode. Sample No.6 was too stiff and thus the top
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and bottom of the sample rotated in the same phase. In this situation, a spurious mode

was measured instead of the actual mode.

Aluminum sample No.4 was chosen for the calibration and validation of the device for

induced anisotropic tests. Aluminum sample No.4 was installed in the resonant column

device and vertical load was increased from 0 to 3000 N. A small increment (0.88%) was

observed in the obtained frequency for the aluminum sample (Table 3.5). The observed

increment may be due to the compliance of the aluminum sample and connections.

3.5.4.2 Validation with soil sample

Piezoelectric elements (shear plates) were installed in the top and bottom caps of the

modified resonant column device (Figure 3.6). A series of resonant column and piezo-

electric element tests were conducted on dry samples subjected to isotropic and stress

induced anisotropic loading.
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Figure 3.13 shows a decrease in maximum shear modulus with an increase in void ratio

and a decrease in confining pressure for dry Hostun Sand subjected to isotropic confining

pressure. The increase in stiffness with an increase in the confining pressure is due to the

increase in the normal contact forces at contact points (will be discussed in Chapter 5).

Four stress paths were defined (Figure 3.14a) to perform the stress induced anisotropic

tests on dry Hostun Sand. In this experimental program shear plates (SP) were mounted

in the top and bottom caps of the resonant column device and stress induced anisotropic

tests were conducted with both of the devices simultaneously. The measured maximum

shear modulus with both of the methods are compared with each other in this section.
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Figure 3.14: The experimental results using the resonant column device and shear plate

elements: (a) stress paths; (b) stress path: I, Dr=35%−90%; (c) stress path: II, Dr=50%−
90%; (d) stress path: III, Dr=70%− 90%
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Two statistical measures of Root-Mean-Square-Deviation (RMSD) and R2 were used to

estimate the scatter of measured results by the resonant column in comparison with SP.

For stress path I, vertical pressure was increased and confining pressure was kept constant

at 200 kPa during RC tests. The measured maximum shear modulus (Gmax) with RC

and SP tests for this stress path is presented in Figure 3.14b.

This figure confirms a good agreement between the obtained results with the modified

resonant column device and bender elements at this stress path. For stress path II,

ṕ = σ1+2σ3
3

was kept constant at 200 kPa during RC tests and q = σ1 − σ3 was increased.

The values of Gmax for dry Hostun Sand with relative density of 70%−90% for this stress

path are presented in Figure 3.14c. Figure 3.14c shows a good agreement between the

obtained results with the modified resonant column device and shear plate elements at

this stress path. For the third stress path (stress paths III), the constant stress ratio

was used to compare and contrast the obtained experimental results (K=σ3
σ1

=0.5). As is

clear in Figure 3.14d, the obtained results from the modified resonant column device are

consistent with the obtained results from shear plate elements.

Sadek et al. (2007) conducted a comprehensive series of stress induced anisotropic tests

on Hostun Sand with a relative density of 65% using cubical cell apparatus designed at

Bristol. The results obtained by Sadek (2006) and the results from the modified resonant

column device on the same stress path are presented in Figure 3.15.
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As can be seen in this figure, there is a good agreement between the results from the

modified resonant column device and the results presented by Sadek (2006), although the

device and the test methods are quite different in both of the experimental studies.

3.5.5 Calibration for damping

The objective of this section is to validate the adopted method, the energy method, for

determining the damping ratio in the soil samples and to assess the effect of vertical load

on the equipment damping. Energy method was used to measure the damping of soils

with the Bochum resonant column device (Wichtmann et al. 2001, Wichtmann & Tri-

antafyllidis 2013, Wichtmann et al. 2015). In the energy method, the damping ratio is

determined from the hysteresis loop as the ratio of the dissipated energy in one cycle of

loading (∆W ) over the 4π times of the total energy (W ). However, the device and the

method of calculation of damping must be calibrated before performing a test with the

device.

Aluminum sample No.4 was used to determine the equipment damping. The measured

damping for aluminum sample No.4 with the energy method is presented in Figure 3.17.

According to this figure, the damping in a very small strain region is more than the mea-

sured damping in a small strain region. Therefore, two additional methods, free vibration

decay curves and the bandwidth method, were used to determine the damping ratio in

the aluminum sample and to compare the results with the energy method.
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In the free vibration decay curve, after taking resonant frequency, the input power of device

was disconnected and the signal received from the accelerometer (Acc.1) was recorded.

The recorded signal was used to determine the damping ratio. The logarithmic decrement

of, Z, is calculated from the recorded decay curve (Stokoe et al. 1999a):

Z = ln(
z1

z2

) (3.9)

where, z1 and z2 are the amplitude of two cycles (Figure 3.16a). Material damping ratio

is calculated from the the value of Z (Stokoe et al. 1999a).

η =

[
Z2

(4π2 + Z2)

]1/2

(3.10)

In the second method, the bandwidth method or half-power method, the variation in

RMS in respect to frequency was recorded. The recorded data were used to determine

the resonant frequency and damping ratio at the desired shear strain amplitude. Resonant

frequency and half-power frequencies (f1 and f2) are the main variables to calculate the

damping ratio with this method. The frequencies f1 and f2 are two points, where the

amplitude of excitation is equal to 1/
√

2 of maximum amplitude (Figure 3.16b). In

material with a small damping ratio, damping ratio can be estimated from the following

relationship (details can be found in: Das 1993 and Stokoe et al. 1999a):

η =
f2 − f1

2fr
(3.11)

The measured damping with these methods for aluminum sample No.4 is summarized in

Figure 3.17. This figure shows the impact of noise on damping at a very small strain

region with the bandwidth method is less than that for the other methods which may be

due to the effects of near field conditions on accelerometers. According to the observed

results, two calibration lines can be defined as equipment damping in the Bochum reso-

nant column device (Figure 3.17). The first line relates to the very small strain regions.

In this region amplitude of deformations is so small (oscillation with low amplitude) that

the results were affected by noise or near field conditions. The other line, which is approx-

imately constant at the small strain region, is related to the equipment damping which is

due to the connections and quality of the sample.

The equipment damping was measured under anisotropic loading by increasing the verti-

cal load. Table 3.5 shows damping decreases with an initial increase in the vertical load

at top of the sample. Connections between the aluminum sample and the device may be

fitted to each other better by increasing the vertical load, therefore, the initial decrease

in the damping may be due to the compliance of connections and the sample.
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Table 3.5: The measured resonant frequency for aluminum sample under anisotropic load-

ing

Specimen Contact size Vertical load RC test Effects of damping ratio

t [cm] s [cm] Fv [N] fr [Hz] loading bar ∆v [%] at γ ≈ 10−5

4 0.1 0 92.41 - 0.00205

4 0.1 500 92.83 0.45% 0.00184

4 0.1 1000 93.11 0.76% 0.00163

4 0.1 2000 93.19 0.84% 0.00158

4 0.1 3000 93.22 0.88% 0.00161

3.6 Experimental procedure

3.6.1 Isotropic tests

Figure 3.18 shows the steps for assembly of the Bochum resonant column device. Firstly,

specimens with 10 cm in diameter and 20 cm in height were prepared by the dry funnel

deposition method for mixtures and clean coarse materials. Afterward, the top cap was
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mounted at the top of the sample. Then, the maximum vacuum of 55 kPa was applied

through the top and bottom caps to stabilize the sample before assembling the resonant

column device. The sample dimensions were measured accurately and then the sample was

transfered to the RC device and the other parts of the device were assembled. Afterwards,

the vacuum was reduced and the confining pressure was increased slowly step by step.

The specimens were consolidated to the desired isotropic pressure of σ1 = σ3=55, 80, 110,

140, 170 and 200 kPa before performing resonant column test.

3.6.2 Anisotropic tests

Specimens with 10 cm in diameter and 20 cm in height were prepared by the dry pluviation

method. The maximum vacuum of 55 kPa was applied through the top and the bottom

caps to stabilize the sample. Then the vacuum was reduced and the confining pressure

was increased slowly step by step. For stress induced anisotropic tests with a constant

confining pressure, the confining pressure was increased up to desired value (σ3=200 kPa),

then the vertical pressure was increased using the double acting cylinder (Figure 3.10)

slowly to: 250, 300, 350, 400, 500, 550 and 600 kPa. After consolidation of ´the samples

at the desired stress state, resonant column tests were conducted on the sample. Then

the pressure was released and the device was prepared for the new sample to perform a

resonant column test for the next stress ratio. To perform the test with constant ṕ the

confining pressure was decreased and the vertical pressure was increased slowly (Table

3.6). For the stress path with constant stress ratio, confining pressure was increased to

the desired isotropic pressure (55, 100, 200 and 300 kPa) and then the vertical stress was

increased up to a stress ratio equal to two.

After consolidation of the sample at the desired stress conditions, the amplitude of ex-

citation was increased to get the resonant frequency, and consequently, the stiffness and

damping ratio at different amplitudes of excitation.

Table 3.6: The measured resonant frequency for aluminum sample using the resonant

column device

No. stress path confining pressure, σ3, [kPa] vertical pressure, σ1, [kPa]

1 Isotropic σ3 σ3

2 Constant σ3 σ3 σ3+∆σ

3 Constant ṕ σ3-∆σ′′ σ3+2∆σ′′

4 Constant K = σ3/σ1 σ3 σ3+σ3



56 3 Material and experimental program
30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 

2
 

5
 

6
 

7
 

8
 

3
 

4
 

Figure 3.18: Steps of assembly of the Bochum resonant column apparatus
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3.7 Summary

The experimental program of this research was discussed in this chapter. The physical

and mechanical properties of adopted materials, Hostun Sand and glass beads, were dis-

cussed in the required detail for the interpretation of the experimental results in later

chapters of this thesis. The resonant column device is an accurate device but the accu-

racy of the results depends on the calibration of the device (Drnevich 1978). Therefore,

the adopted numerical, theoretical and experimental procedures for the calibration and

validation of the apparatus were discussed in this chapter. According to the analysis

with ABAQUS software and experimental tests performed with aluminum samples: 1-

two rotational frequencies can be detected with the free-free resonant column device, one

of them is the actual rotational mode of the sample, 2- the effect of the vertical load on

the dynamic behaviour of the system (resonant column device) can be ignored by mini-

mizing the resistance moment produced at the connection area, between the loading bar

and the actuator. The experimental results measured with the resonant column device

were consistent with the results from the piezoelectric elements for the same sample and

various stress paths. Therefore, the results showed that this device has been modified and

validated successfully.





4 Effect of fines content

4.1 Introduction

Mechanical properties of geo-materials, e.g. stiffness and damping, are significantly related

to the amplitude of deformations or vibrations. The small strain properties of materials

can be affected by parameters which are related to the particle properties, structure of

packing and boundary conditions. The structure of packing is one of the important pa-

rameters which have a significant influence on the stiffness of materials (e.g. Hardin &

Drnevich 1972b, Drnevich 1978, Tatsuoka et al. 1978, Darendeli 2001, Hardin & Kalinski

2005 and Wichtmann & Triantafyllidis 2013). the structure of packing may be affected by

the existence of fine particles in granular packing. The influence of fine particles on the

fabric of samples is explained from a microscopic level and also empirical relationships

can be modified based on the micro and macroscopic observations which is helpful to

estimate the small strain stiffness of mixtures. Thevanayagam (1999) used the concept of

equivalent void ratio for limited published datasets to predict maximum shear modulus

and reported that the effect of fc can be captured by replacing e by e∗ in Equation 2.7

but their data were too limited to draw conclusions. Rahman et al. (2012) estimated

e∗ from soil grading properties and used it in Equation 2.7 to capture the effect of fines

for collected data sets. They reported that e∗ in Equation 2.7 can capture the effect of

non-plastic fines. However, collected data sets were not designed for the evaluation of e∗

to capture the effect of fc on Gmax and the maximum fc covered was only 20%. Thus, a

suitable approach for capturing the effect of a wide range of non-plastic fc on small and

intermediate strain properties is still a topic of research interest.

Soil elements have a nonlinear behaviour when they subjected to a different amplitude

of deformation or vibration. The lower and upper curves for modulus ratio and damp-

ing ratio curves, proposed by Seed et al. (1984), are shown in Figure 4.1a and Figure 4.1b.

59
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Figure 4.1: Small strain stiffness and damping in materials, modified after Darendeli

(2001): (a) modulus ratio versus shear strain; (b) material damping ratio versus shear

strain

From Figure 4.1a and Figure 4.1b, it can be seen that damping and modulus degradation

are significantly affected by material properties, (e.g. Iwasaki & Tatsuoka 1977, Ishibashi

& Zhang 1993, Darendeli 2001 and Wichtmann & Triantafyllidis 2013). Ishibashi & Zhang

(1993) studied the influence of the plastic index (PI) on the nonlinear behaviour of soils

using the resonant column device and concluded that the modulus ratio increases and the

damping ratio decreases by increasing PI. Darendeli (2001) and Wichtmann & Triantafyl-

lidis (2013) studied the influence of grain size distribution on the modulus degradation

curve and damping. However, studies on the modulus degradation and damping ratio in

granular material containing a wide range of fines content are rare. Hence, discussions

on the effect of fine particles on the intermediate strain properties of granular packing

containing a wide ranges of fines content are also considered in this chapter. The effect

of fines on the observed experimental results will be discussed from the microscopic point

of view.

Therefore, resonant column and compression wave velocity tests were conducted on the

mixtures (Section 3.3) containing a wide range of fines content to evaluate the effects

of fine particles on small strain properties at a macro level. Afterward, the observed

results were explained through the concept of equivalent void ratio, e∗, developed by The-

vanayagam (1998).

This chapter has four major objectives: (i) present the results from resonant column and

piezoelectric element test on mixtures, covering a wide range of fc, e and p′; (ii) present
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a micro-mechanic analysis, Micro-CT scan, to assess the effect of fc on elastic proper-

ties; (iii) evaluate the relative performance of Hardin’s formulation for the mixtures; (iv)

predict the maximum moduli of mixtures with Hardin’s empirical relation (Equation 2.7)

and calculate fitting parameters for coarse particles.

4.2 Test results on sand mixtures

4.2.1 Test results on Gmax

The influence of p′ and e on Gmax of clean Hostun Sand and sand containing fines content

is presented in Figure 4.2. Test data show distinctive and separate trends of Gmax - e

relation for different p′ and Gmax. These figures show Gmax increases with increasing p′

irrespective of fc. Figure 4.2 shows the effect of void ratio on maximum shear modulus for

all of the mixtures. This figure shows that the value of maximum shear modulus decreases

with an increase in the void ratio. For instance, the value of Gmax for dense clean Hostun

Sand (Dr=90%) is 73 MPa at the confining pressure of 55 kPa but, this value increases to

145 MPa at confining pressure of 200 kPa. Also, the value of Gmax for Hostun Sand with

relative density of 90% is 145 MPa at the confining pressure of 200 kPa and decreases to

94 MPa for loose sample with relative density of 35% at the confining pressure of 200 kPa.

These results confirm the dependency of Gmax on the confining pressure and density of

sample which is also true for all of the mixtures (Figure 4.2). Figure 4.3 shows the effect

of fines content on maximum shear modulus. This figure shows that the maximum shear

modulus decreases with an increase in the fines content. As can be seen in Figure 4.3, the

highest value for maximum shear modulus was obtained for clean Hostun Sand for all of

the applied confining pressures. For instance, according to Figure 4.3f at p′=200kPa and

e=0.72, the value of Gmax for clean Hostun Sand is about 128 MPa. This value decreases

to 84 MPa for clean Hostun Sand containing 30% fc.
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(f)

Figure 4.2: The effect of confining pressure and void ratio on the maximum shear modulus

of mixtures: (a) fc=0%; (b) fc=5%; (c) fc=10%; (d) fc=20%; (e) fc=30%; (f) fc=40%
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Figure 4.3: The effect of fines content on the maximum shear modulus for the various

confining pressures: (a) p′=55 kPa; (b) p′=80; kPa (c) p′=110 kPa; (d) p′=140 kPa; (e)

p′=170 kPa; (f) p′=200 kPa
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4.2.2 Test results on G(γ) and η(γ)

Resonant column tests were conducted to evaluate the effect of shear strain amplitude

and fines content on intermediate strain properties (G(γ) and η(γ)) of mixtures. Figure

4.4 shows, as an example, the effect of isotropic loading on the modulus degradation and

damping curves of clean Hostun Sand. Figure 4.4a shows that shear modulus is constant

and equal to the maximum shear modulus up to a shear strain amplitude of 5E-6. Also,

this figure shows modulus ratio increases with an increase in the confining pressure. The

effect of the confining pressure on the damping ratio is shown in Figure 4.4b. As it can be

seen in this figure, the damping ratio decreases with an increase in the confining pressure.

Figure 4.5 shows the effect of fines content on modulus and damping ratio curves, in

comparison with clean Hostun Sand, for samples with a relative density of 75%-77%. The

general trend shows the G/Gmax-logγ shifts to the lower stiffness with an increase in the

fines content up to fines content of 20% and then, G/Gmax increases for mixtures with a

higher amount of fines content (Figure 4.5a). Experimental test data show that damping

ratio curves have also been affected by fines content (Figure 4.5b). This figure shows the

damping ratio decreases with an increase in the fines content up to fines content of 20%

and it then decreases with further increases in the fines content.
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Figure 4.4: The effect of p′ on intermediate strain properties of clean Hostun Sand Dr=38%

for isotropic loading: (a) G/Gmax; (b) damping ratio (η)
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Figure 4.5: Small and intermediate strain stiffness and damping of mixtures, Dr=80%-

90%: (a) modulus degradation curves; (b) damping curves; (c) the effect of fines content

on G/Gmax; (d) the effect of fines content on η(γ)

The test data shows that the value of ηmin increases with an increase in the fines content.

Damping and the modulus ratio at small and intermediate strain amplitude, 2E-4 and

2E-5, are presented in Figure 4.5d and Figure 4.5c with respect to fines content (quartz

powder). These figures show the dependence of damping and the modulus ratio to fines

content which is more significant in the intermediate strain region.

The test data in Figure 4.6 reveal that the shear modulus (G) is significantly affected by

the density of the sample. This figure also shows that the shear modulus is constant and

equal to the maximum shear modulus up to a shear strain less than the elastic threshold

value, γet (Stokoe et al. 1999b), which is a value between 5E-6 for clean Hostun Sand to
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1.5E-5 for clean Hostun Sand containing 40% fines content. The value of γet increases

significantly with an increase in the fines content. The general relation between G/Gmax

and logγ curves for the mixtures at the mean effective stress of 200 kPa is presented

in Figure 4.7. This figure shows that the effect of density of sample on G/Gmax is not

significant for all of the mixtures. Figure 4.8 shows the effect of void ratio on damping

ratio curves. The presented experimental results show the insignificant effect of relative

density on the damping ratio and G/Gmax of clean Hostun Sand and mixtures which is in

line with the experimental results presented by Kokusho (1980), Iwasaki et al. (1978) and

Wichtmann & Triantafyllidis (2013). This figure reveals that γet decreases slightly with

an increase in the fines content up to 20%fc, and it then increases significantly with an

increase in the fc. The test data show that the damping ratio increases with an increase

in the fines content up to fc of 20% and then decreases with further increases in the fines

content.
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Figure 4.6: Shear modulus versus shear strain, p′=200 kPa: (a) fc=0; (b) fc=5%; (c)

fc=10%; (d) fc=20%; (e) fc=30%; (f) fc=40%



68 4 Effect of fines content

1

0.5

0.6

0.7

0.8

0.9

1

1e-006 1e-005 0.0001 0.001

G
G

m
a
x
[-
]

γ [-]

fc=0%

Dr = 35%− 90%

(a)

1

0.5

0.6

0.7

0.8

0.9

1

1e-006 1e-005 0.0001 0.001

G
G

m
a
x
[-
]

γ [-]

fc=5%

Dr = 35%− 90%

(b)

1

0.5

0.6

0.7

0.8

0.9

1

1e-006 1e-005 0.0001 0.001

G
G

m
a
x
[-
]

γ [-]

fc=10%

Dr = 35%− 90%

(c)

1

0.5

0.6

0.7

0.8

0.9

1

1e-006 1e-005 0.0001 0.001

G
G

m
a
x
[-
]

γ [-]

fc=20%

Dr = 35%− 90%

(d)

1

0.5

0.6

0.7

0.8

0.9

1

1e-006 1e-005 0.0001 0.001

G
G

m
a
x
[-
]

γ [-]

fc=30%

Dr = 35%− 90%

(e)

1

0.5

0.6

0.7

0.8

0.9

1

1e-006 1e-005 0.0001 0.001

G
G

m
a
x
[-
]

γ [-]

fc=40%

Dr = 35%− 90%

(f)

Figure 4.7: Modulus ratio (G/Gmax) versus shear strain, p′=200 kPa: (a) fc=0; (b) fc=5%;

(c) fc=10%; (d) fc=20%; (e) fc=30%; (f) fc=40%
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Figure 4.8: Damping ratio versus shear strain, p′=200 kPa: (a) fc=0; (b) fc=5%; (c)

fc=10%; (d) fc=20%; (e) fc=30%; (f) fc=40%
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4.3 Test results for glass bead mixtures

Resonant column tests and compression element tests were conducted on coarse glass

beads and mixtures to assess the effect of fines content on stiffness (Goudarzy et al. 2014).

Resonant column and compression element tests were carried out at isotropic pressures of

50, 100, 150 and 200 kPa. After increasing the isotropic pressure to the target isotropic

pressure, a rest period of at least 1 hour was applied to allow for creep of the sample. The

structure of adopted samples was susceptible to significant volume change and collapse

during the loading which was due to the interaction between the highly rounded fine

and coarse particles (Yang & Wei 2012). The results for samples without collapse are

presented in this section. The maximum shear modulus was determined by the resonant

frequency measured using the resonant column device. In the compression wave velocity

test a sinusoidal wave with a frequency of 10 kHz was transmitted by the compression

elements which were mounted in the top and bottom caps of the sample. The first arrival

or deflection method was adopted to detect travel time, tp (e.g. Yamashita et al. 2005).

Therefore, the compression wave velocity (vp) is equal to the length of the sample at

the time of the compression element test over the travel time. Therefore, the values of

Gmax and Mmax were measured using the experimental results and the value of Young’s

modulus, Emax, was calculated using Equation 4.1 (Birch 1961 and Mavok et al. 2009).

E =
G(3M − 4G)

M −G (4.1)

where M is the p-wave modulus, G is the shear modulus and E is Young’s modulus. The

experimental results show the increasing and decreasing of the maximum elastic moduli,

Gmax, Mmax and Emax, with increase in the mean effective stress and void ratio respectively

(Figure 4.9). As an example, Figure 4.9a shows the effect of p′ on the maximum shear

modulus, Gmax. As can be seen in this Figure, Gmax increases with an increase in p′ and

decreases significantly with an increase in e. Also, the results demonstrate the dependence

of maximum elastic moduli to fine particles (e.g. Figure 4.9b, Figure 4.9c and Figure 4.9d).

Test data show that the value of the maximum elastic moduli decreases with an increase

in the fines content up to 30% fines content and then it increase with further increasing of

fines content which will be explained from the microscopic point of view in the following

sections.
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Figure 4.9: (a) the effect of void ratio and p′ on Gmax of coarse glass beads; (b) Gmax vs e

for the mixtures at p′=200 kPa; (c) Mmax vs e for the mixtures at p′=200 kPa; (d) Emax

vs e for the mixtures at p′=200 kPa;

4.4 Interpretation based on the micro-structure

The conceptual model developed by Thevanayagam (1998) is used to explain the influ-

ence of fine particles on the mechanical response of coarse particles at microscopic and

macroscopic scales. Figure 4.10 shows the effect of fine particles on force chains and con-

sequently the stiffness of mixtures. Based on the amount of fines content and the situation

of fine particles in the mixture, five cases can be distinguished. In case i: in this case,

fines content is zero and coarse particles make up the packing structure.
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Figure 4.11: Sketch of interaction between two particles, Vs is shear wave velocity

By increasing the fines content, fines are placed in the coarse matrix. Due to the particle

size ratio, fine particles can be accommodated in the void spaces and fines are confined

by coarse particles (case ii), therefore they do not increase the amount of inter-particle
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contacts and so do not contribute in the force chains of granular structure. However,

some times, due to the sample preparation methods or material properties, fine particles

are accommodated between two coarse particles (case iii and case iv). In this situation,

fines separate two coarse particles from each other and due to the interaction between

fine and coarse particles; stiffness of packing will be significantly affected. For ease of

discussion, Figure 4.11 is used to explain the effect of particle size or interaction between

particles on shear stiffness. From literature (e.g. Duffy & Mindlin 1957, Petrakis & Do-

bry 1987, Walton 1987, Chang & Liao 1994, Bui 2009 and Otsubo et al. 2015), grain

stiffness and contact stiffness are two main characteristics which can make a significant

effect on shear wave velocity and shear stiffness in granular packings. In the packing

containing the same particle characteristics, shear wave velocity and shear stiffness are

strongly affected by contact properties or contact stiffness (Kcontact, Figure 4.11). Contact

stiffness (Kcontact) between smooth spheres is determined using Hertzian theory (Section

2.4). Hertzian theory reveals that normal contact force, contact radius and contact fric-

tion increases proportionally to grain diameter (Johnson 1985). Therefore, the observed

decreasing in stiffness for mixtures containing fines (case iii and case iv) could be explained

through the weak contact between fine and coarse particles in comparison with a contact

between coarse and coarse particles.

By further increasing the fines content, fine particles will be dominant in the response of

granular packing (case v); in this case, coarse particles will act like reinforced elements

inside fine particles packing. Therefore, displacement and sliding of fines controlled by

coarse particles, and the stiffness of packing depends on the characteristics of the fine par-

ticles. Thevanayagam (1998) proposed parameters b and m to determine the influences

of fine particles at microscopic level (Section 4.5). As long as fines content are less than a

certain value (threshold fine content, fthr), parameter b will measure the active contacts

(case iii and case iv) and for fines content greater than the threshold value parameter m

will evaluate the interaction between coarse and fine particles (case iv).
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(a) (b)

Figure 4.12: Micro-CT scan image of clean Hostun Sand with: (a) 10% quartz powder;

(b) 50% quartz powder, (gray portions: quartz powder, white portions: Hostun Sand)

To evaluate the effect of fc on the micro-structure of Hostun Sand with fc, Micro-CT

scans on loose and dense specimens were carried out at Kumamoto University. The size

of specimens was 40mm in height and 7mm in diameter and was prepared by the same

dry deposition method. Figure 4.12a and Figure 4.12b show the Micro-CT images of the

cross sections of specimens for sand with 10% and 50% fc for relative densities of 92% and

85% respectively. The white portions are sand particles and the grey zones are fines, i.e.

quartz powders. It is apparent from Figure 4.12a that 10% fc merely coated some of the

coarse particles. A fraction of fc were located between coarse particles and the remaining

fraction of fines were placed in void spaces between the sand particles. However, some

coarse particles were still in direct contact. This confirms that the micro-structure for

sand with 10% fines is still dominated by sand structure, although some fines are active

in contact. The Micro-CT scan for clean Hostun Sand mixed with 50% fc is presented in

Figure 4.12b. It is evident that the shapes of sand particles are lost and they are floating

on gray zones, i.e. in fc. Thus, the stiffness of the specimen would be dominated by fc.

This micro-structure was also explained as “sand-in-fines”.

Micro-CT scanning was also done on the glass bead mixtures. The imaging method

(Micro-CT scan) was done on samples with 1 cm in diameter and 2 cm in height prepared

by tamping methods, the same as the method used for preparing the glass bead mixtures

in the resonant column tests. It is worthwhile to mention that the goal of such scanning

was to find the effect of sample preparation on the position of fines particle. Figure 4.13 is

an example of Micro CT scans of adopted mixtures (30 and 50 percentage of fines content).
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Figure 4.13: Micro CT scan images: (a) fc=30%, 3D image; (b) fc=30%, 2D section; (c)

fc=50%, 3D image; (d) fc=50%, 2D section, (the Micro-CT scans on the glass bead mix-

tures were done at SmartLab, Institute of Information and Communication Technology,

Bulgarian Academy of Sciences.)

AVISO software was used to count the number of coarse particles and contacts between

two coarse particles. For decreasing the time of analysis, two elements, containing 40

coarse particles, were chosen from the samples with 0 and 20 percentage fines content

(Figure 4.14a and Figure 4.14b). Analyses of samples show that the number of contacts

between coarse particles decreased with an increase in the fines content. For example,

the number of contacts in the specimen containing 40 coarse particles and 0% fines con-

tent was 77 which decreased to 42 for the specimen containing 43 coarse particles and

20% fines content (specimens with the same number of coarse particles). For ease of dis-

cussion, the term of coarse-coarse coordination number, CNcoarse−coarse = 2Nc,coarse−coarse
Nb,coarse
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(Shire et al. 2014) is used for comparing the results. In this relationship, Nc,coarse−coarse

is the number of contacts between coarse particles and Nb,coarse is the number of coarse

particles. Therefore, in the sample containing 0%fc, the value CNcoarse−coarse was equal to

3.83 and for sample containing 20% fc, CNcoarse−coarse was 1.95 which shows the decreas-

ing of CNcoarse−coarse with an increase in fines content. This means, due to the sample

preparation some of the fines were placed between the coarse particles. Therefore, for

fines content less than threshold value (fc < fthr), micro CT images show that some of

the fine particles have been located between coarse particles. Therefore, fines particles

participate in force chains and their contribution must be taken into account.

Therefore, stiffness of packing is affected by fines content less than threshold value, the

same as the observed experimental results. However, for fines content greater than thresh-

old value (fc > fthr), fine particles will be dominant on coarse particles, therefore, coarse

particles act like a reinforced element inside fine materials (Figure 4.13d and Figure 4.13c).

This confirms the model of “fines-in-sand” by Thevanayagam et al. (2002) that some fine

particles are active in sand force structures and others are inactive. Thus, for the same

void/solid ratio, i.e. same e, the effective particle contact decreases with an increase in

fc and, therefore, their stiffness would be less than for clean sand for the same e. This is

also consistent with experimental observation as noted above. However, this also means

that for the same e, sand with fines does not represent the same force structure as clean

sand, and thus the concept of “equivalent” void ratio for sand with fc emerged.

(a) (b)

Figure 4.14: Analysis of Micro-CT images: (a) clean coarse glass beads; (b) clean coarse

glass beads containing 20% fine particles
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4.5 Concept of equivalent granular void ratio, e∗

The concept of “equivalent” void ratio was first presented by Mitchell (1976) who con-

sidered fines as void in force structure. For the “fines-in-sand” micro-structural model,

Thevanayagam et al. (2002) recognized the active contribution of a fraction of fines par-

ticles in sand force structure and proposed Equation 4.2.

e∗ =
e+ (1− b)fc
1− (1− b)fc

(4.2)

where, e∗ is the equivalent granular void ratio and b is the fraction of fines that are active

in the sand force structure. In recent years, interest has been growing in the use of the

equivalent void ratio to characterize the behaviour of sand-fines mixtures. The key step in

doing that is the determination of factor b in Equation 4.2. Most studies have employed

the best fit approach to obtain the b value. The value of b varies from 0 to 1. b=0

means fines are inactive (i.e. void) in the sand force structure which is a very common

assumption for very low fc. However, for higher fc, b 6= 0 which means b is a function of

fc. From the mathematical attributes of binary packings, Rahman et al. (2008) developed

a semi-empirical relation to predict the parameter b.

b =

[
1− exp

[
− λ(fc/fthr)

nb

k

]](
r(fc/fthr)

)r
(4.3)

where r = (D10/d50)−1, D10 = size of sand at 10% finer, d50 = size of fine at 50% finer,

k = (1−r0.25), λ and nb are the fitting parameters which depend on the soil properties. fthr

= threshold fine content which separates “fines-in-sand” from the “sand-in-fines” micro-

structure. In this study, fthr was estimated from the emin versus fc curve. Furthermore,

the experimental results from damping ratio and modulus ratio curves revealed that the

behaviour of mixtures changed with fines more than 30%. Regarding these evidence, fthr

was between 20% to 30% which was assumed to be 25% in this study. It is noted that b

can be obtained from back analysis (Thevanayagam et al. 2002; Ni et al. 2005), however

to take advantage of the prediction of b, the above approach is used in this study.

For the “sand-in-fines” micro-structure when fc≥fthr, Thevanayagam (1998) proposed

Equation 4.4 to determine e∗.

e∗ =
e

fc + 1−fc
Rmd

(4.4)

Where, m is a fitting parameter that evaluates the influence of coarse particles inside the

fine particle matrix and Rd is size ratio, D50

d50
(Ni et al. 2005).

It is worthwhile to mention that the current study does not intend to establish e∗ concept
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which was done earlier (Thevanayagam 1998; Rahman et al. 2008), but offers a simple

and unified methodology to predict Gmax irrespective of fc which may trigger significant

research interest along this line for this challenging problem.
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4.6 Empirical relationships for Hostun Sand mixtures

4.6.1 Empirical relationships to predict Gmax

Various prediction models have been developed in the last few decades which are applicable

to computer programs for geo-material response analysis. Hardin & Black (1966) were,

arguably, the first to propose one of the most widely used empirical relationship, which

considers the effect of density through the void ratio, e, and p′ to predict Gmax of a soil.

This relationship is referred to as Hardin’s relation which is represented by the following

general form (Equation 4.5):

Gmax = kf(e)→ Gmax = Af(p)f(e)→ Gmax = Apa(
p′

pa
)nf(e) (4.5)

where, A is a material constant which depends on the soil type, pa is the atmospheric

pressure (100 kPa), p′ is the mean effective stress, n is an exponent and f(e) is the void

ratio function. Two common functional forms for f(e), Equation 4.6 (Hardin & Black

1966) and Equation 4.7 (Jamiolkowski et al. 1995), are usually found in the literature

(Table 2.1).

f(e) =
(x− e)2

1 + e
(4.6)

f(e) = e−y (4.7)

where, x depends on the angularity of soils (e.g. x=2.97 for angular sands and 2.17

for rounded sands). Note, x is a limiting void ratio in Equation 4.6; for example, if e

is assumed as a value equal to 2.17, for rounded sands f(e) will be equal to zero and

consequently, Gmax will be 0. Therefore, to avoid this limitation, x can be considered as a

fitting parameter which may depend on the angularity of soils. y in Equation 4.7 is also a

fitting constant. Apart from Hardin and Jamiolkowski’s functional forms of f(e), Seed’s

model has K2,max parameter (Seed et al. 1984). Seed et al. (1984) proposed a relationship

between Gmax and p′ as Gmax=218.8 K2,max(p
′)0.5 (in SI unit); where, K2,max may be a

function of e. K2,max versus e for different fc is presented in Figure 4.15; where K2,max

decreased with fc. The results show that the value of K2,max not only depends on the

density of materials but also depends on the fines content. Therefore, K2,max, in Seed’s

relationship, must be correlated with the fines content.
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Figure 4.15: The effect of fines content on K2max for the various confining pressures: (a)

p′=55 kPa; (b) p′=80 kPa; (c) p′=110 kPa; (d) p′=140 kPa; (e) p′=170 kPa; (f) p′=200

kPa
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4.6.2 Inspection of Hardin’s relationship

To predict the maximum shear modulus of mixtures, the fitting parameters of Hardin’s

relation must be determined for all of the mixtures. As a first step, the constant fitting

parameters of void ratio functions, x and y, must be determined accurately. The values

of x and y were determined by fitting the curve k.f(e) to the test data in Gmax versus

e curves. Figure 4.16 shows an example of the fitted curves to Gmax versus e for clean

Hostun Sand. The trend lines are plotted in this figure as a form of kf(e), where f(e) is

the void ratio function (e.g. Equation 4.6 and Equation 4.7) and k is the remaining part

of Equation 4.5 which depends on p′ and the adopted f(e). By preforming this calibration

analysis, the constant values of x and y were determined. The solid lines in Figure 4.16

are related to Hardin’s void ratio function, Equation 4.6, and the dashed lines are related

to Jamiolkowski’s void ratio function, Equation 4.7. Afterwards, Gmax was normalized

with respect to the void ratio function. Figure 4.17a and Figure 4.17b show an example

of the normalized Gmax-p
′/pa for clean Hostun Sand for both of the void ratio functions.

These curves are useful to find the value of the parameter A and exponent of pressure

function, n, in Hardin’s relation (Equation 4.5). The values of the fitting parameters in

Hardin’s relation for clean Hostun Sand are summarized in Table 4.1.
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Figure 1: Gmax versus void ratio at p′=200 kPa for: (a) Clean Hostun sand (b) Clean Hostun
sand containing 30% fine content

Figure 4.16: Gmax versus e to determine the constant fitting parameters of the void ratio

function for clean Hostun Sand
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Figure 4.17: The fitting parameters of Hardin’s relation to determine Gmax of clean Hostun

Sand: (a) Hardin’s void ratio function; (b) Jamiolkowski’s void ratio function

Table 4.1: Summary of fitting parameters for Hardin’s relation

Hardin’s void ratio function

Dr [%] x n A R2 RMSD

40 %- 90% x = 2.1232 n = 0.441 A = 0.837 R2 =0.981 2.83

Jamiolkowski’s void ratio function

Dr [%] y n A R2 RMSD

40 %- 90% y = 1.6631 n = 0.441 A = 0.558 R2= 0.978 2.97

Two statistical measures of Root-Mean-Square-Deviation (RMSD) and R2 were used to

estimate the scatter of the results in Table 4.1. The RMSD and R2 for Hardin’s f(e) were

2.83 and 0.981 and for Jamiolkowski’s f(e) were 2.97 and 0.978 respectively. Therefore,

the results for both f(e) showed a good agreement between the observed and predicted

results.

The same analyses were performed on the other mixtures to determine the fitting param-

eters of Hardin’s relation. Figure 4.18a shows an example of fitted kf(e) curves to the test

data for mixture containing 30% fines content to find the constant value of x in the void

ratio fuction (Equation 4.6). Figures 4.18b, 4.18c and 4.18d show the effect of fines con-

tent on the constant fitting parameters of clean Hostun Sand mixed with quartz powder.

As can be seen in Figure 4.18, the fitting parameters of Hardin’s relation and the void
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ratio function (Equation 4.5 and Equation 4.6) are affected by fines content significantly.

Therefore, for the prediction of the maximum shear modulus, using Hardin’s relation, the

fitting parameters must be determined for all of the mixtures which is beyond the scope

of our study. In this chapter, instead of calculating the fitting parameters of Equation

4.5, Equation 4.6 and Equation 4.7 for mixtures, the concept of the equivalent void ratio,

e∗, will be used to estimate the value of Gmax for all of the mixtures.
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Figure 4.18: (a) Gmax versus e to determine the value of x in Equation 4.7; (b) the effect

of fc on the value of x in Equation 4.7; (c) the effect of fc on the stress exponent, n, in

Equation 4.5; (d) the effect of fc on the constant value of A in Equation 4.5
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4.6.3 e∗ in Hardin’s relationship

4.6.3.1 Hardin’s relationship for mixtures

Micro-structural studies suggest that the transition soil’s behaviour is controlled by sand

structure for fc < fthr and fine structure for fc > fthr, so Hardin’s relationship for clean

Hostun Sand should capture the effect of fc through e∗. Thus, Hardin’s relation was

established first for clean Hostun sand for both functional forms of f(e). The fitting

parameters, A, n and x or y for Hardin’s relation, are presented in Table 4.1.

According to the micro-structural analysis, the effect of fc on Gmax can be captured with

e∗ while the other parameters remain the same as determined values for clean Hostun

Sand. This means that substitution of e∗ for e in Equation 4.5 for clean sand should

capture the effect of fc. Thus, the equation Equation 4.5 becomes:

G = kf(e∗)→ G = Af(p)f(e∗)→ Gmax = Apa(
p

pa
)nf(e∗) (4.8)

where, A and n are parameters for clean Hostun Sand. Other parameters, x and y in

Equation 4.6 and Equation 4.7, also remain the same as determined values for clean

Hostun Sand. The accuracy of the predicted results depends on the micro-structural

parameter b, i.e. λ, nb and m in the e∗ relationship.

4.6.3.2 Calibration of parameters

Giving consideration to a large number of data sets, Rahman et al. (2008) proposed λ and

nb are equal to 0.3 and 1, respectively, which capture many characteristic responses of

undrained soil behaviours through e∗ (e.g. Rahman et al. 2008, Rahman & Lo 2012 and

Rahman & Lo 2014). However, Rahman et al. (2008) suggested that these parameters

may vary for different type of soils. The other micro-structural parameters for Hostun

Sand containing fines are available from grading properties. For fc > fthr, m is needed

for Equation 4.4. m was determined by back analysis of the test data which were 0.11

and 0.14 for Hostun Sand containing 30 and 40 percent fine content respectively. Ni et al.

(2005) showed that m can be a function of
CucC2

uf

Rd
where, Cuc and Cuf are the uniformity

coefficient of coarse and fines respectively. The relationship between m and
CucC2

uf

Rd
was

also approximated by a linear relationship (Figure 4.19) for the mixtures used in this

study. According to the grain size distribution of Hostun Sand and quartz powder, the

value of
CucC2

uf

Rd
for the adopted materials was about 0.32. Thus, m = 0.12 was obtained

from the linear relation for Hostun Sand for fc > fthr.
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Five different calibrations were performed to evaluate the influence of parameters b and

m on the accuracy of the predicted Gmax for clean Hostun Sand containing different per-

centages of fines content. Parameter b is related to the fitting parameters of λ, therefore,

calibrations were performed on the constant fitting parameter of λ. Table 4.2 presents a

summary of the calibrations performed in this chapter to find the accuracy of the pre-

dicted results using Equations 4.2 and 4.4.

• Calibration I

In this calibration, “fines-in-sand” micro-structure is assumed for all fc and the fitting

parameters, as proposed by Rahman et al. (2008) (i.e. λ=0.30 and nb=1.0), were used

to predict Gmax for fc=0-40%, despite fthr = 25%. Figure 4.20a and Figure 4.20b show

Gmax vs e∗ for the observed results at p′ of 55kPa and 200kPa (only the lower and upper

range of p′ were plotted for clarity).

The results, in comparison to Figure 4.3f, show that the influence of fc can be captured

by the concept of e∗. The dashed lines represent the fitted curves for Hardin’s f(e) and

the solid lines are the fitted curves for Jamiolkowski’s f(e). All other fitting parameters

are the same as clean Hostun Sand (Table 4.1). However, the measured Gmax for fc<30%

are close to both the fitting lines, but deviation was observed for fc>30%.
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Table 4.2: Summary of calibrations performed on parameters λ and m for Jamiolkowski’s

f(e)

variable

Calibration fc < fthr fc > fthr R2 RMSD

Calibration I Eq. 4.3, λ=0.3 Eq. 4.3, λ=0.3 0.86 8.92

Calibration II Eq. 4.3, λ=0.3 Eq.4.4, m from Fig. 4.19 0.97 3.58

Calibration III Eq. 4.3, λ=back analysis Eq.4.4, m from Fig. 4.19 0.98 3.15

Calibration IV Eq. 4.3, λ=0.3 Eq.4.4, m=back analysis 0.98 3.23

Calibration V Eq. 4.3, λ=back analysis Eq.4.4, m=back analysis 0.98 2.71
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Figure 4.20: Gmax versus e∗ for calibration I: (a) p′=55 kPa; (b) p′=200 kPa

Figure 4.20 also shows all data points and the scatter of the predicted and measured Gmax.

This figure shows that the scatter of data is not acceptable for fc>30%. The overall R2

and RMSD for all data points were 0.86 and 8.92 for Hardin’s f(e). However, overall R2

and RMSD were 0.95 and 4.65 for test data with fc<30%. These results confirm that the

“fines-in-sand” model, i.e. Equation 4.2, is suitable for fc<fthr and it is not applicable

for fc>fthr .

• Calibration II

In this calibration, Equation 4.2 and Equation 4.3, with the fitting parameters proposed

by Rahman et al. 2008 (i.e. λ=0.30 and nb=1.0), were used to predict Gmax of clean

Hostun Sand containing up to 20% fc. Thus, only grading parameters, i.e. D10 and d50,

were required to calculate e∗.
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Figure 4.21: Gmax versus e∗ for calibration II: (a) p′=55 kPa; (b) p′=200 kPa
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Figure 4.22: Measured Gmax versus predicted Gmax for calibration II: (a) Hardin’s f(e);

(b) Jamiolkowski’s f(e)

Equation 4.4 was employed to predict Gmax of clean Hostun Sand with fc≥30%. The

grading properties, i.e. D50, d50 and m=0.12 from the linear relationship in Figure 4.19,

were required to calculate e∗. Therefore, this calibration was not dependent on back anal-

ysis which requires test data as a prerequisite. Figure 4.21a and Figure 4.21b show Gmax

versus e∗, at the confining pressure of 55 and 200kPa. The deviation of the measured

Gmax and fitted curves for both f(e) reduced significantly, particularly after fc≥30%.

The functional form of Hardin’s f(e) and Jamiolkowski’s f(e) for clean Hostun Sand are
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presented with dotted and solid lines respectively. The data at higher e∗ and lower Gmax

show a relatively higher scatter than at lower e∗ and higher Gmax.

Hardin’s relation also shows a slight deviation toward a higher e∗ and lower Gmax which

may be attributed to the inherent variability of Gmax toward that end. Therefore, to have

an objective comparison, Gmax was predicted for fc with Hardin’s relation with the same

constant parameters as determined for clean Hostun Sand and e replaced by e∗.

The predicted versus measured Gmax for Hardin’s f(e) and Jamiolkowski’s f(e), for all

of fc, are shown in Figure 4.22a and Figure 4.22b respectively. Figure 4.22a and Fig-

ure 4.22b show a good agreement between the predicted and measured Gmax for all data

points. The values of R2 and RMSD of predicted results are summarized in Appendix A

(Table A.1 and Table A.2) for Hardin’s and Jamiolkowski’s f(e) respectively. The overall

R2 and RMSD were 0.94 and 5.18 for Hardin’s f(e) and 0.97 and 3.58 for Jamiolkowski’s

f(e) respectively. It is wothwhile to mention that the fitting parameters of Hardin’s and

Jamiolkowski’s void ratios are the same as determined values for clean Hostun sand. It is

noted that Jamiolkowski’s f(e) with an inverse power function of e gave better prediction

than Hardin’s f(e) for a large data set with a wide range of fc and the RMSD of 3.58 is

used as a reference value to evaluate the performance of other calibrations.

The fitting parameters for this calibration were obtained from soil grading properties.

Also, constant parameters in Hardin’s relation (Equation 4.5) are the same as the de-

termined values for clean Hostun Sand (Table 4.1). Therefore, this calibration was not

dependent on the back analysis of the test data. Thus, the RSMD of this calibration

for Jamiolkowski’s f(e), 3.58, was used as a reference value to evaluate the accuracy of

other calibrations. The reduction of RMSD for Jamiolkowski’s f(e) from calibration I to

calibration II is about 23% of 4.65.

• Calibration III

In this calibration, Equation 4.3 was used to determine the value of parameter b for clean

Hostun Sand containing 0 to 20% fc. However, the value of parameter λ in Equation 4.3

was determined by back analysis of test data to get the maximum R2. m=0.12, as in

Figure 4.19, was used to find e∗ with Equation 4.4 for clean Hostun Sand with 30-40%

fines content. Gmax vs e∗ is presented for p′=55 and 200 kPa in Figure 4.23a and Figure

4.23b. The predicted vs measured Gmax for all data points are shown in Figure 4.24a

and Figure 4.24b, and their R2 and RMSD are summarized in Appendix A (Table A.1

and Table A.2) for Hardin’s and Jamiolkowski’s f(e) respectively. The overall R2 and

RMSD for all data points were 0.96 and 4.29 for Hardin’s f(e) and 0.98 and 3.15 for

Jamiolkowski’s f(e) respectively.
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Figure 4.23: Gmax versus e∗ for calibration III: (a) p′=55 kPa; (b) p′=200 kPa

1

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

P
re
di
ct
ed

G
m
a
x
[M

P
a]

Measured Gmax [MPa]

R2=0.96

RMSD=4.29

fc = 0%

fc = 5%

fc = 10%

fc = 20%

fc = 30%

fc = 40%

Figure 1: Callibration of shear plate
(a)

1

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

P
re
di
ct
ed

G
m
a
x
[M

P
a]

Measured Gmax [MPa]

R2=0.98

RMSD=3.15

fc = 0%

fc = 5%

fc = 10%

fc = 20%

fc = 30%

fc = 40%

Figure 1: Callibration of shear plate
(b)

Figure 4.24: Measured Gmax versus predicted Gmax for calibration III: (a) Hardin’s f(e);

(b) Jamiolkowski’s f(e)

Again, Jamiolkowski’s f(e) gives better prediction than Hardin’s f(e). The reduction of

RMSD for Jamiolkowski’s f(e) is only about 12% of 3.58 obtained from calibration II,

although a large fraction of data points used in the back analysis to get the value of λ in

Equation 4.3.
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• Calibration IV

In this calibration for fc < fthr, λ=0.30 as proposed by Rahman et al. 2008 was used

in Equation 4.3. However, for fc > fthr, m was determined by back analysis for the

maximum R2. m for 30% and 40% fc, denoted as m30 and m40, were variable for different

p′.
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Figure 4.25: Gmax versus e∗ for calibration IV: (a) p′=55 kPa; (b) p′=200 kPa
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Figure 4.26: Measured Gmax versus predicted Gmax for calibration IV: (a) Hardin’s f(e);

(b) Jamiolkowski’s f(e)
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Figure 4.25a and Figure 4.25b show Gmax vs e∗ only for p′ = 55 and 200 kPa. Although it

may not be visually recognizable, the data points for fc > fthr are closer to fitting curves

in comparison to calibration II.

The plot for predicted vs measured Gmax for all data points are shown in Figure 4.26a and

Figure 4.26b. Again, Jamiolkowski’s f(e) gave a better prediction than Hardin’s f(e).

The reduction of RMSD for Jamiolkowski’s f(e) is only about 10% of 3.58, although a

fraction of data used in the back analysis to obtaine m.

• Calibration V

In calibration V, λ in Equation 4.3 was determined by back analysis of the test data where

fc < fthr. For fc > fthr, m value was determined by back analysis of test data (m30 and

m40). Figure 4.27 shows Gmax vs e∗ for all of the applied confining pressures. As can be

seen in Figure 4.27, the effect of fc can be captured by e∗ for all of the confining pressures.

The scatter of the data points are lowest compared to all other calibrations. The same

as other calibrations, Jamiolkowski’s f(e) gives better prediction than Hardin’s f(e). A

good agreement between the predicted and measured Gmax was confirmed as shown in

Figure 4.28a and Figure 4.28b. The values of R2 and RMSD are presented in Appendix

A (Table A.3 and Table A.4). The reduction of RMSD for Jamiolkowski’s f(e) is about

24% of 3.58 confirming the best prediction among all calibrations. Figure 4.32 shows the

effect of e∗ and p′ on the maximum shear modulus for all of the mixtures.
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Figure 4.27: Gmax versus e∗ for calibration V at (a) p′=55 kPa and (b) p′=200 kPa
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Figure 4.28: Measured Gmax versus predicted Gmax at calibration V: (a) Hardin’s f(e);

(b) Jamiolkowski’s f(e)

4.7 Empirical relationships for glass bead mixtures

4.7.1 Hardin’s relation

In this section the fitting parameter of Hardin’s relation will be determined for coarse

glass beads. Jamiolkowski’s void ratio function (Equation 4.7) has been used to discuss

the results of glass bead mixtures at a macro level.

As a first step, the fitting parameter of Jamiolkowski’s void ratio function, y, must be

determined accurately. The value of y was determined by fitting the curve kf(e) to the

test data in Figure 4.29a. The trend lines are plotted in this figure as a form of kf(e);

where f(e) is the void ratio function and k is the remaining part of Equation 4.5 which

depends on the value of p′. The constant value of y was determined after performing a

regression analysis. The dashed lines in Figure 4.29a are related to the Jamiolkowski’s

void ratio function. Afterwards, Gmax was normalized with respect to the void ratio

function (Figure 4.29b). The normalized Gmax was drawn versus p′/pa. This curve was

useful to find the value of parameter A and the exponent of stress (n) in Hardin’s relation

(Equation 4.5) for coarse glass beads. The same analysis were conducted to find the

constant fitting parameters of Hardin’s relation to estimate the values of Mmax and Emax.

Table 4.3 presents the values of the fitting parameters in Hardin’s relation for coarse glass

beads from the performed analyses.
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Figure 4.29: Determination of fitting parameters of Hardin’s relation for coarse glass beads:

(a) Gmax vs e and (b) Gmax/f(e) vs p′/pa

Table 4.3: Summary of the parameters of Hardin’s relationship

Modulus Dr [%] y A n R2

Gmax 40-80 3.98 0.180 0.403 0.98

Mmax 40-80 1.869 2.002 0.301 0.97

Emax 40-80 3.99 0.479 0.385 0.97

4.7.2 e∗ in Hardin’s relation

The concept of equivalent void ratio will be used to predict the maximum muduli of granu-

lar packing containing fine particles without performing test on mixtures at a macroscopic

level. This is one of the advantages of this approach compared to previous methods to

predict the stiffness of materials. In this approach, the fitting parameters of Hardin’s

relation will be the same as those determined for coarse glass beads. The impact of fines

can be expressed through their influence on the equivalent void ratio function (Equation

4.2 and Equation 4.4). Accuracy of the equivalent void ratio concept depends on the

parameter b (fc less than fthr) and m (fc more than fthr) in the e∗ relation. Equation 4.3

was used to predict parameter b and also parameter m in the equivalent void ratio was

determined by the back analysis of test data for Gmax from the resonant column test.
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Table 4.4: Summary of fitting parameters for the equivalent void ratio

p′ [kPa] m30 m40 m50 R2 RMSD

50 0.62 0.63 0.63 0.95 5.19

100 0.59 0.59 0.59 0.96 6.16

150 0.55 0.56 0.55 0.96 6.68

200 0.53 0.56 0.56 0.95 8.66

Ave. 0.573 0.585 0.583 0.96 8.63
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Figure 4.30: (a) Gmax vs e∗ for the mixtures at p′=200 kPa; (b) Mmax vs e∗ for the

mixtures at p′=200 kPa; (c) Emax vs e∗ for the mixtures at p′=200 kPa; (d) predicted

Gmax vs measured Gmax for all of the mixtures
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Table 4.4 shows the summary of determined values for parameter m in the samples con-

taining 30%, 40% and 50% fines content. The average value of m (Table 4.4) was used to

determine the equivalent void ratio (e∗) when fc is more than fthr.

Figure 4.30a shows Gmax vs e∗ only for 200 kPa. The solid line in Figure 4.30a is kf(e)

curves obtained for coarse glass beads at the same confining pressure as Table 4.3.

As can be seen in Figure 4.30a, the data points for all of the mixtures are close to the

test data for coarse glass beads. This means the effect of fc can be captured through the

concept of equivalent void ratio for “fines-in-coarse” and “coarse-in-fines” mixtures. Fig-

ure 4.30b and Figure 4.30c show Mmax vs e∗ and Emax vs e∗ only for 200 kPa. The solid

lines in these figures are kf(e) curves obtained from Mmax-e and Emax-e of coarse glass

beads at the same confining pressure. Figure 4.30d shows the predicted Gmax using the

Equation 4.5 and by replacing e by e∗, versus measured Gmax using the resonant column

device. The results show a good agreement between the predicted and measured results.

4.8 Discussion

The micro-mechanic considerations for sand with fines revealed that the concept of equiv-

alent void ratio, e∗, is valid for Hardin’s relation to predict Gmax of granular materials

for a wide range of fc. However, the accuracy of the predicted results depends on the

parameters b and m in Equation 4.2 and Equation 4.4 respectively.
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The calibration V was the best approach with the lowest RMSD, however λ and m were

obtained by back analysis. This model would be preferable if some data for different

fc, at least three set of data, were available and so back analysis would be affordable.

Calibrations III and IV also require back analysis to a lesser extent. However, the value

of λ back analyzed for calibration III showed a good correlation with p′ as shown in Figure

4.31, which can be used for the material used in this study. Calibration II, in comparison

to other approaches, does not need back analysis and seems to be sufficient to predict

Gmax irrespective of fc. The values of b and m in e∗ were determined from the grading

properties of sand and fines or from the back analysis of test data. Figure 4.32 shows that

e∗ in comparison with e provides a unique relationship between Gmax, f(p′) and f(e∗)

in space, where the fitting parameters of Hardin´s relationship are the same as clean

sand. The main advantage of such a single relationship is that if Hardin’s relationship is

established for clean sand or sand with any fc, then the relation can be transformed to e∗

space where e for clean sand is equal to e∗ for sand with fines. This allows us to predict

unknown Gmax for different fc.
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A detailed description of such a prediction approach for steady state data can be found in

Rahman & Lo (2014). This prediction approach is also applicable for fc > fthr but with

the “sand-in-fines” model.

4.9 Published data sets

Calibration II for fc < fthr is evaluated for four collected data sets from the literature as

shown in Table 4.5. All the parameters for e∗ were obtained from soil grading properties.

Table 4.5: Summary of published datasets in Figure 4.33

Sands Fines D10 d50 fc References

Iruma Z1 Iruma X1 0.13 0.050 0-14 Iwasaki & Tatsuoka (1977)

Iruma W Iruma X1 0.65 0.050 0-11 Iwasaki & Tatsuoka (1977)

Foundary Sil-co-Sil 0.17 0.01 0-30 Thevanayagam & Liang (2001)

Volcanic Coarse same 2.05 0.05 3.2-17.3 Sahaphol & Miura (2005)
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A good agreement between predicted and measured Gmax, with Jamiolkowski’s f(e), was

confirmed as shown in Figure 4.33 with R2 of 0.97 and RMSD of 6.95.

4.10 Application and limitations

There are soils with almost the same sand grading but different fines along the geological

profile, e.g. Christchurch, New Zealand (Green & Cubrinovski 2010) and Ahmedabad,

India (Ravishankar et al. 2005), where both sites severely liquefied during earthquakes. In

these cases, RC tests on the original material (which may or may not have fines) would be

performed to establish Hardin’s relation. This relationship can be transformed to e∗ space

to predict Gmax irrespective of fc. This has a significant advantage when a slight variation

in fc considerably changes Gmax, an average of 20% change in Gmax was observed for a

variation in fc from 0 to 5% as shown in Figure 4.3. This is particularly helpful when a

bore log has almost the same host sand but different fc along the depth profile.

This study has a number of limitations - the concept of e∗ was developed based on binary

packing which requires sand and fines particle´s disparity ratio to be greater than 6.5.

This was achieved in this study for gap graded Huston Sand and quartz powder. The

outcomes of this study are not directly transferable to well graded sands. The concept

of threshold fines content, fthr, is important for separating “fines-in-sand” and “sand-in-

fines” models. However, fthr is an idealization of a flat transition zone and can not be

determined precisely. The e∗ at fthr for “fines-in-sand” and “sand-in-fines” models are

close but not exactly the same for the entire range of e used in this study. This is due

to the lack of a continuing equation for e∗ for fc before and after fthr. This may have

contributed to the scatter of the data points and has already been reflected in the reported

RMSDs. The e∗ was mostly validated with non-plastic to low plastic fines and thus one

may not expect a single Hardin’s relationship for sand with plastic fines. Despite the

limitations, the above approach offers a simple and unified methodology to predict Gmax

irrespective of fc which has a practical engineering application and may trigger significant

research interest in this challenging problem.
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4.11 Summary

Resonant column tests were conducted on clean Hostun Sand to evaluate the influence of

mean effective stress, p′, and void ratio, e, on the maximum shear modulus, Gmax. Then,

the effect of fines on Gmax was investigated with a systematic increase in fines content,

fc, up to 40%. The major outcomes of the study are:

• A decrease in Gmax with an increase in e and an increase in Gmax with an increase

in p′ was observed for clean Hostun Sand. Hardin’s relation was adequate to predict

Gmax with both Hardin’s and Jamiolkowski’s void ratio function, f(e). A systematic

increase in fines content, fc, up to 40% in RC tests showed that Gmax decreased with

an increase in the fc.

• A micro-CT scan revealed that sand with fines develops two different micro-structures:

“fines-in-sand” and “sand-in-fines”. For “fines-in-sand”, fine particles are partially

active in sand force structure and for ”sand-in fines”, sand particles are floating in

fine particles. The void ratio, e, for sand with fines does not represent the same

force structure as clean sand and is not suitable for a consistent comparison. The

equivalent granular void ratio, e∗ appears to be a consistent state parameter for

density.

• The conversion of e to e∗ requires two parameters, b and m. b can be obtained from

soil grading properties with a fitting parameter λ=0.30 as in Rahman et al. (2008)

and m can be obtained from correlation as in Figure 4.19. However, the parameters,

λ and m can be further optimized by back analysis. Therefore, five calibration were

conducted, including Rahman’s method which does not require back analysis. The

best calibration model was obtained when λ and m were back analyzed (calibration

V). The second best model was obtained when only λ was determined by a back

analysis of test data (calibration III). The back analyzed λ was linearly related to

p′ which can be used to predict λ for Hostun Sand.

• Jamiolkowski’s f(e) provides a better fit than Hardin’s f(e) for a large number of

data points with fc. An inverse power function of e appeared to be a better function

than a function with a limiting void ratio constant, x.

• The unique relationship in space in Gmax,
p′

pa
and e∗ cloud be defined for clean

sand or sand with fines. The main advantage of such a single relationship is that if

Hardin’s relationship is established for clean sand or sand with any fc < fthr, then
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the relationship can be transformed to e∗ space where e for clean sand is equal to e∗

for sand with fines. This allows us to predict unknown Gmax for different fc. This

prediction approach is also applicable for fc > fthr but only with the “sand-in-fines”

model.

• From the microscopic point of view, the results for glass bead mixtures showed that

some fine glass beads were placed in between the gaps in coarse glass beads. They

reduced overall e, i.e. increased density, but did not contribute to a coarse skeleton.

This caused a leftward shift in the trends. However, other fine glass beads may be

placed in between the coarse glass beads and may contribute to the coarse skeleton.

This reduced the rate of the leftward shift with a higher fc. Therefore, one can

observe a decrease in the stiffness of the packing with fc less than fthr. However, for

fc more than fthr, fine glass beads dominant in coarse glass beads and, therefore,

coarse particles acted like reinforced elements inside fine materials.



5 Stress induced anisotropy

5.1 Introduction

Settlement of soils is one of the challenging problems in the soil-structure interaction

during vibration, e.g. earthquake phenomena. Differential settlement may cause distress

in the structures founded in the soil mass during earthquake. Maximum shear modulus

and modulus degradation curves can be used to estimate the magnitude of ground settle-

ments during earthquake (e.g. Tokimatsu & Seed 1987). The effect of isotropic confining

pressure and soil properties on modulus degradation of soils have been studied in the

previous works, as referred in Chapter 2. However, soil elements may be subjected to

more complicated stress conditions in comparison with the stress conditions applied in

the existing studies on intermediate strain properties up to now. Furthermore, the effect

of density on maximum shear modulus of sample subjected to stress induced anisotropy

at different stress paths must be discussed. Therefore, the objective of this chapter is

to find the effect of stress induced anisotropy for different stress paths on the small and

especially intermediate strain properties of sand.

This chapter is divided into two main parts. The main goal of part one is to find the ef-

fect of stress induced anisotropy on small strain properties of glass bead packing from the

microscopic point of view. Therefore, for approaching to this objective, DEM simulation,

by means TRUBAL code (Magnanimo et al. 2008), and modified resonant column device

were adopted for this study. Since TRUBAL code is restricted to modeling of the spher-

ical particles, the resonant column test were also conducted on spherical glass particles.

The outcome of this part is to discuss the effect of stress induced anisotropy for different

stress paths on micro and macro mechanical properties of granular packings. In part

two, the resonant column test was conducted on Hostun Sand sample and experimental

results are presented. The main goal of this section is to find the effect of stress induced

anisotropy on small and intermediate strain properties of sand samples. Furthermore, the

experimental results on intermediate strain stiffness will be used to modify the empirical

101
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relations for prediction of modulus degradation curves in the samples subjected to stress

induced anisotropy.

5.2 Glass beads: Numerical and experimental results

5.2.1 Overview

In this section, a combined experimental and numerical approach is used to study the

shear stiffness at small and intermediate strain in granular materials. A set of exper-

iments is performed on glass beads samples by using a resonant column device under

different stress paths, namely isotropic compression, triaxial compression (GB-I) and con-

stant stress ratio K deformation (GB-II). The results revealed that the maximum shear

modulus is a function of the stress induced anisotropy, as determined by the specific

stress paths. Existing analytical relations fail in describing this extra dependence, either

when Equation 2.8 is used or the contribution of (induced) deviatoric stress is included

through Equation 2.9. Along with laboratory tests, DEM simulations were performed to

propose a micro-mechanical interpretation of the observed behavior. Starting from the

numerical observations a modified version of Hardin’s relation is proposed, that includes

a dependence of the maximum shear modulus on the coordination number.
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The section has been divided into the three parts. In part one, experimental results for

samples subjected to isotropic and anisotropic loading will be presented. Afterwards, the

experimental results will be presented in comparison with numerical results for calibration

and validation of the DEM model. Finally, in part three, the effect of stress induced

anisotropy is studied from the micro-mechanical point of view along different stress paths.

5.2.2 Experimental procedure

A series of Resonant column tests were conducted on glass bead samples subjected to

stress paths GB-I and GB-II (Figure 5.1). The experimental procedure is the same as

presented procedure in Section 3.6. It must be noted that initial void ratio in all of the

samples, in experimental and numerical procedure, was equal to 0.57.

5.2.2.1 Experimental results on Gmax

The experimental results on Gmax for isotropic loading were presented in Section 4.3.

Figure 4.9a in Section 4.3 showed the increasing of Gmax with an increase in the isotropic

confining pressure.
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Figure 5.2 shows the effect of stress induced anisotropy for stress path GB-I and GB-II

on maximum shear modulus, Gmax. As it is apparent from this figure, Gmax increases

slightly with an increase in the shear stress and it then decreases with further increasing

of shear stress for stress path GB-I which is due to increasing of shear contact forces at

contact points and decreasing of coordination number, CN. This Figure shows that Gmax

for stress path GB-II increases with an increase in the shear stress which is due to the

increasing of CN and normal contact forces for this stress path. The observed results will

be discussed in comparison with numerical results with more details in Section 5.2.4.

5.2.2.2 Experimental results on G(γ) and η(γ)

The results of the resonant column test on the dense glass bead samples, subjected to

stress induced anisotropy for stress paths GB-I and GB-II, are presented in this section.

This section is divided into two main parts: in the first part, the results of isotropic loading

are presented and in the second part, the results of stress induced anisotropy are presented.
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Figure 5.3: G and η versus shear strain for dense glass bead packing with Dr=88%− 91%

and subjected to isotropic loading: (a) G− γ; (b) η − γ
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Isotropic loading

It is well-known that at a given strain amplitude, the shear modulus (G) and modulus

ratio (G/Gmax) increase with an increase in the confining pressure, and damping ratio

decreases with an increase in the confining pressure. The observed experimental results

(Figure 5.3a and Figure 5.3b) also show the dependency of modulus degradation and

damping ratio on the isotropic confining pressure and amplitude of shear strain which is

in line with the observed results from DEM simulation and the results from the literature.

Figure 5.3a shows that the shear modulus is constant and equal to the maximum shear

modulus up to shear strain of 8E-6 which decreases with an decrease in the confining

pressure. Figure 5.3b shows that damping ratio has the minimum value up to shear

strain of 8E-6 which decreases with an increase in the confining pressure. The results

show that shear stiffness increases with an increase in the confining pressure and damping

ratio decreases with an increase in the confining pressure.

Anisotropic loading

Figure 5.4 show the effect of shear strain on the modulus ratio and damping ratio of

the glass bead sample with a relative density of 90% and subjected to anisotropic stress

conditions at stress paths GB-I and GB-II respectively. Figure 5.4a and Figure 5.4c

show that the shear stiffness is constant and equal to the maximum shear modulus up to

the shear strain of 6E-6. Figure 5.4b and Figure 5.4d show the effect of stress induced

anisotropy on the damping ratio versus the shear strain for stress paths GB-I and GB-II

respectively. For stress path GB-I, the experimental test data show that damping ratio

decreases slightly with an increase in the vertical stress up to vertical stress of 300 kPa

and it then increases at a vertical stress of 350 kPa (Figure 5.4b).

However, the damping ratio decreases with an increase in the confining and vertical stress

for stress path GB-II (Figure 5.4d). Figure 5.4 shows the effect of stress induced anisotropy

on damping ratio for stress path GB-II is more obvious than stress path GB-I. The effect

of stress induced anisotropy on shear modulus (G) is presented in Figure 5.4a and Figure

5.4c for stress paths GB-I and GB-II respectively.

For stress path GB-I, Figure 5.4a reveals that the modulus ratio increases slightly with

an increase in the vertical stress up to vertical stress of 300 kPa and it then decreases

at a vertical stress of 350 kPa. Figure 5.4c shows modulus ratio increases significantly

with an increase in the confining pressure and the vertical stress. Figure 5.4 reveals that

the effect of stress induced anisotropy on G for stress path GB-II is more significant than

stress path GB-I. The results confirm that G is affected by stress induced anisotropy but

the impact of stress induced anisotropy strongly depends on the adopted stress path and

history of loading.
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Figure 5.4: G and η versus shear strain for dense Glass bead packing, Dr=88% − 91%:

(a) G− γ curve at stress path GB-I; (b) η− γ curve at stress path GB-I; (c) G− γ curve

at stress path GB-II; (d) η − γ curve at stress path GB-II

5.2.3 Numerical procedure

5.2.3.1 Adopted DEM code

Distinct element method originated from Cundall & Strack (1979) was used to prepare

random assemblies of identical, frictional, elastic spheres. 10,000 particles with diameter

d=1.25mm were randomly generated in a periodic cubic cell. The elastic material proper-

ties typical for glass spheres with shear modulus Gp=29GPa and Poisson’s ratio, ν = 0.2

were assigned to the particles. The interaction between particles is represented by a non-
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central contact force in which the normal component follows the non-linear Hertz’s law

and for the tangential component a bilinear relationship with elastic displacement and

frictional Coulomb sliding with friction coefficient µf were incorporated (details are given

in Makse et al. 1999). For the sake of simplicity gravity was neglected in the numerical

experiments. The following definition of the stress tensor was applied to quantify the

macroscopic response of a DEM assembly (Cundall & Strack 1979 and Magnanimo et al.

2008):

σij =
1

V

c∑
Nc

f ci l
c
j , (5.1)

where, V is the total volume of the assembly, Nc is the total number of contacts, f c

denotes the contact force at a contact, and lc defines the branch vector joining the centers

of two contacted particles. The mean effective stress and deviatoric stress can then be

determined by p′ = 1/3σii and q =
√

3sijsij/2, where sij = σij−δijp′ (δij is the Kronecker

delta). Coordination number was used to characterize the average number of contacts in

the sample, that is the particle arrangement. The simple definition of the coordination

number is CN = 2Nc/NB, with NB number of particles in the sample. However, numerical

simulation have revealed that at any time during compression, there are some particles

with no contacts and some particles with only one contact. None of these particles are

contributing to the stable state of stress (Thornton & Antony 1998). Hence a corrected

coordination number is introduced:

CN =
2Nc −N1

(NB −N0 −N1)
, (5.2)

where, N1 and N0 are the number of particles with only one or no contacts, respectively.

It is worthwhile to notice that the focus is on a unique scalar quantity CN and the

orientation of the contact network is neglected.

5.2.3.2 Sample preparation

The density of the generated sample in DEM must be close to the experimental value

e ∼ 0.57. It is well-known experimentally that different packing structures are realizable

according to the preparation protocol (Figure 5.5). The adopted approach is to generate

numerically packings of different structure and determine the relevant variables needed

to characterize the elastic response (for details see Magnanimo et al. 2008). Independent

on the preparation used, the final structure of the packings which in turn determines

the moduli is interest. Here a protocol was employed as suggested by Magnanimo et al.

(2008) and Makse et al. (1999), where µ and p′ are set in two different phases during
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the compression of the sample, as depicted in Figure 5.5. After random generation in a

periodic box, frictionless particles are isotropically compressed from an initial gas to the

target density. The compression is stopped just before this density to obtain a dense but

non-equilibrated packing. Then, the sample is relaxed, reaching zero-pressure and zero-

coordination number. It follows a second isotropic compression with friction to reach the

target pressure, p′ = 100KPa, as in the experiments. This stress-controlled deformation

is carried out using a servo-mechanism that constantly adjusts the applied strain rate

according to the difference between the target stress state σ∗ij and the measured stress

state σij. At each time step, the strain rates ε̇ij are adjusted to the value:

ε̇sij = ε̇ij + g(σij − σ∗ij), (5.3)

where g is a gain factor that is tuned to achieve equilibrium in an optimal way. In this

stage, for a fixed pressure, four different coefficients of friction, µi = 0.01, 0.04, 0.06 and 0.1

were used to create four different packings, respectively. When the coordination number

becomes constant with variation of number of cycles the same final friction coefficient

µf = 0.3 was imposed for all packings and, with further servo-control adjustment, we

create an equilibrated condition for the system, until the system is fully equilibrated. All

packings are now characterized by the same friction coefficient. However their structure

depends on different preparations during the compaction loading. The result is that, for

a given pressure and density, packings with different coordination number, ranging from

CN0 = 5.239 to CN0 = 5.943 at the highest, have been generated (see Table 5.1). All

packings are generated to have the same density e ' 0.57 and friction coefficient µf = 0.3,

when they reach the final reference state.

 

p‘ 

target p´ 

p´=0, CN=0  time

i=0  i<f  i<f f f 

Compaction  Compaction  Equilibrium Equilibrium

Figure 5.5: Specimen preparation stages in this study
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Table 5.1: The effect of µi on coordination number, CN , and shear stiffness at isotropic

pressure of 200 kPa

ṕ µi e CN FN Gmax[MPa]

200 0.01 0.57 6.04 0.280 249.4

200 0.04 0.58 5.81 0.294 226.6

200 0.06 0.58 5.64 0.307 208

200 0.1 0.58 5.47 0.321 193.7

5.2.3.3 Isotropic compression, triaxial compression and constant K deformation

The four samples described above are subjected to further isotropic compression in or-

der to reproduce the isotropic samples at 50, 100, 200 and 300 kPa as performed in the

experiments. During each loading step, the target pressure is maintained with the servo

mechanism in Equation 5.3. Starting from the sample at 200kPa a triaxial compression

(stress path GB-I) is performed, by applying strain along the axial direction (e11 = e1)

and keeping the lateral stress, σ22 = σ33 = σ3, constant through the servo mechanism.

Numerical samples with identical (p′, q) value as applied the experiments (Figure 5.1) are

then created. Similarly to the procedure used in experiments, every sample in the triaxial

loading path is prepared starting from the initial isotropic state at 200kPa. The goal is to

reproduce triaxial loading, so the sample is compressed very slowly (γ∂t/∆0 is lower than

5× 10−3, where γ∂t is the accumulated strain in the time step ∂t, and ∆0 the average vol-

umetric compression in the isotropic state). After each increment the system is relaxed

until a new equilibrium state is reached. The procedure is repeated for the full set of

packings obtained with the different µi preparations, that is for each point on the triaxial

path in Figure 5.1, four numerical data are created. Finally, a similar procedure by means

of the servo-control mechanism is adopted to deform the samples along a constant stress

ratio K0 = σ3/σ1. Configurations that reproduce the stress states in the stress path GB-II

are reproduced. Values for the characteristics of the samples are reported in Tables 5.2,

5.3, and 5.4 for isotropic compression, triaxial compression and constant K respectively.
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5.2.3.4 Elastic moduli

At each step along the different loading paths (for all four samples) in Figure 5.1 (isotropic,

GB-I and GB-II), the maximum shear modulus of the aggregate is calculated by applying

an incremental strain to the sample and then allowing it to relax. The corresponding

incremental stress response is then measured and modulus is calculated as Magnanimo

et al. (2008):

G12 =
(σ12)f − (σ12)i

ε12

, (5.4)

where, (σ12)i is he shear stress before applying the incremental strain, while (σ12)f is the

final value after relaxation. The experimental results from the Bochum resonant column

device show that the shear stiffness is constant and equal to maximum shear modulus up

to the shear strain of less than 5 × 10−6. That is, a similar behavior is expected in sim-

ulations. For each sample, the procedure is repeated several time by applying increasing

amplitudes of the shear strain and the Gmax is extracted in the small amplitude range.

Figure 5.6 shows the variation of G12 with ε12 etc.
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5.2.4 Numerical results on Gmax

5.2.4.1 Isotropic loading and calibration of the numerical model

The maximum shear modulus obtained with the four numerical preparations (different

µi) in the isotropic configurations are reported in Figure 5.7, along with the experimental

data. The results show that the maximum shear modulus increases with an increase in

the confining pressure. The results from DEM simulations show the significant effect of

coordination number on maximum shear modulus in the specimens with the same density

(e=0.57). The figure shows that, for packings with same pressure and density, a differ-

ence in the coordination number due to the preparation, leads to different shear modulus.

Three variables (pressure, density and coordination number) are needed to fully charac-

terize the stiffness of an isotropically consolidated sample, in agreement with findings in

Magnanimo et al. (2008). Moreover, comparison with experiments shows that samples

with less coordinated packings better reproduce our physical samples. The comparison

of the macroscopic shear modulus allows for a back analysis. From the back analysis, the

internal coordination number of the experimental sample is a value between the values

characterized by CN0 = 5.09 and CN0 = 5.38 (created with µi =0.01 and 0.04). Even

if these two packings could be used to proceed further in the analysis, in the following

the whole set of prepared packings will be used in order to define the boundaries of the

physical samples.

5.2.4.2 Anisotropic loading

Results of analyses for stress path GB-I and GB-II are presented in Figure 5.8. Figure

5.8a shows the effect of shear stress, q, and coordination number on maximum shear

modulus of sample subjected to stress path GB-I. The results show that the maximum

shear modulus increases with an increase in the q up to q of 100 kPa and it then decreases

significantly with further increase of q. The measured results for specimens subjected to

stress path GB-II, using DEM simulation, are presented in Figure 5.8b. As can be seen

in this figure, the value of Gmax increases significantly with an increase in the value of

q. The experimental results showed that maximum shear modulus was affected by stress

induced anisotropy for stress paths GB-I and GB-II.

Figure 5.9 shows Gmax-q curves obtained from experimental method in comparison with

the DEM results for the sample with (µi, µf )=(0.04, 0.3). This figure shows the effect

of q on maximum shear modulus for stress paths GB-I and GB-II. Figure 5.10 shows the
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effect of q on CN for the sample with (µi, µf )=(0.04, 0.3). The results show that CN

increases with increasing q for the stress path GB-II. However, for the stress path GB-I,

CN increases slightly up to q of 100 kPa and it then decreases with further increasing of

q.
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Figure 5.11: Normalized shear modulus versus pressure function: (a) Hardin’s relation;

(b) Roesler’s relation

Hardin’s and Roesler’s relations (Equations 2.8 and 2.9) are two common empirical re-

lations which are applicable to predict Gmax in the samples subjected to stress induced

anisotropy. Firstly, Gmax from the experimental results was normalized with respect to

the void ratio (void ratio at the time of RC test). Normalized shear modulus was drawn

versus pressure function, p′1/3, (Figure 5.11a). Figure 5.11a shows a significant deviation

between the results from stress paths GB-I and GB-II in comparison with isotropic load-

ing. As is apparent from this figure, for stress path GB-I, the results up to vertical stress

of 300 kPa are in line with the results from isotropic loading but, the scatter of results

increases with further increasing of σ1. Also, this figure shows that the results for stress

path GB-II are not in the line with the results from isotropic loading. Therefore, there is

not a unique curve (e.g. Equation 2.8 in Figure 5.11a or Equation 2.9 in Figure 5.11b)

to predict the value of Gmax in the samples subjected to stress induced anisotropy which

will be assessed in the next section from a microscopical point of view.

5.2.4.3 Modified Hardin’s relationship

Hardin & Drnevich (1972a) developed a well known relationship to predict the maximum

shear modulus which was a function of void ratio and pressure. Presented results from

DEM simulation show that maximum shear modulus of the specimens with the same

density not only depends on the void ratio and confining pressure but also depends on

the coordination number, therefore, Hardin’s relation can be rewritten as a function of
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coordination number, void ratio and pressure (Equation 5.5).

Gmax = Bf(e)f(CN)(p′)n (5.5)

where, B is a constant parameter, f(e) is void ratio function which is equal to e−3.98 for

glass particles with diameter of 1.25 mm (Goudarzy et al. 2014), f(CN) is the coordination

number function, p′ is the isotropic pressure and n is the pressure exponent. The value

of n was assumed to be n = 1/3, as can be derived when interaction between particles is

the Hertzian contact (Walton 1987, Rothenburg & Bathurst 1989). Coordination number

was assumed to be a power function. Equation 5.6 was used to capture the effect of

coordination number in Equation 5.5:

f(CN) = (CN − 4)ncn (5.6)

where, CN is the coordination number and ncn is its exponent. In Figure 5.12, the nor-

malized shear modulus, Gmax, with respect to the void ratio and pressure (Gmax/f(e)p1/3),

was drawn versus the coordination number for all collected packings, created with differ-

ent procedures and deformed along the three loading paths considered (isotropic, GB-I

and GB-II). Surprisingly, all data results were located in a unique curve, irrespective of

induced anisotropy or (deviatoric) stress state. The results clearly demonstrate the influ-

ence of the micro-structure characterized just by CN . Shear stiffness can be associated

with a unique coordination number, that acts as a state variable and able to completely

characterize the granular sample, when associated with pressure and volume fraction.

It is worthwhile to notice that the constant parameters of B and ncn were also deter-

mined by fitting the power function of B(CN − 4)ncn to the data (Figure 5.12). From the

performed regressions the value of B and ncn were equal to 2.96 and 0.63 respectively.

Therefore, Hardin’s relationship, Equation 5.5, can be used to predict the value of Gmax

in samples subjected to anisotropic loading with sufficient accuracy (Figure 5.13a). The

accuracy of predicted results can be improved by using the Roesler’s relationship, where,

f(cn) = (CN − 4)0.63, B = 2.96, m1 = 0.12 and m3 = 0.21 (Figure 5.13b).
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Fig.8: G versus shear strain fort stress path GB-I, q=50 kPa
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Figure 5.14: DEM simulation and experimental results: (a) G−γ, p′=100 kPa; (b) G−γ,

p′=200 kPa; (c) G
Gmax

− γ, p′=100 kPa; (d) G
Gmax

− γ, p′=200 kPa

5.2.5 Numerical results on G(γ)

The prepared specimens in section 5.2.3.2 were used to find the effect of shear strain on

shear modulus, G. To preform the simulations the boundary movement were applied to

the specimens slowly. Then, the specimen were relaxed without servo control under the

applied shear strain. Afterward, the value of shear stress was extracted from the stress

tensor of specimen and the values of shear strain and shear modulus were calculated. For

higher amplitude of shear strain the value of boundary movement was increased slowly

step by step up to desired shear strain. Figure 5.14 shows the G − γ curves from the

numerical simulation in comparison with the experimental results for isotropic loading.
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The maximum value of G (so-called Gmax) in these figures are consistent with the obtained

values for Gmax in Section 5.2.3.2. Figure 5.14 shows that the experimental results are

located in the grey band obtained from numerical simulation for the specimens with

the same density but with different coordination number. These figures show a good

agreement between the results from DEM simulation and the obtained results from RC

tests although the method of applying shear strain is different.

Figure 5.14c and Figure 5.14d show the effect of coordination number on G/Gmax. As can

be seen in these figures, G/Gmax increases slightly with an increase in the coordination

number.

5.2.6 Interpretation from microscopic point of view

5.2.6.1 Links between macro properties and micro information

Hertz (1882) developed expressions to describe the contact between the smooth elastic

surfaces. Hertzian theory has been used as a basic to explain the relationship between

shear modulus and confining pressure. According to the Hertz-Mindlin’s theory, the

normal and tangential stiffness are function of contact forces and elastic properties of

particles (Yimsiri & Soga 2002 and Johnson 1985). The normal contact stiffness (KN)

between to identical smooth spheres, is given by:

KN =
2Gp

1− νp
α (5.7)

α =

[
3R(1− νp)

8Gp

]1/3

F
1/3
N (5.8)

where, Gp is the shear modulus of particles, νp is Poisson’s ratio of particles, a is the

radius of contact area, R is the radius of particles and FN is the normal contact forces.

Deresiewicz (1953) described the tangential contact stiffness (KT ) between smooth spheres

using Hertzian theory.

KT =
4Gp

2− νp
α

[
1− FT

µFN

]1/3

(5.9)

where, µ is the coefficient of friction between particles and FT is the shear contact force.

Chang & Liao (1994) used a micro-mechanic based model to relate the shear modulus,

Gmax, of an assembly of the randomly packed identical spheres to normal, KN , and tan-

gential, KT , stiffness at contact points. Using the static hypothesis which assumes uniform

strain and uniform stress respectively, expression for estimate of the elastic modulus was
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proposed (Otsubo et al. 2015):

Gmax =
2NR2KN

3V

[
5(KT/KN)

3 + 2(KT/KN)

]
(5.10)

where, N is the number of particles and V is the volume of the sample and KT/KN is

equal to f(νp)

[
1 − FT

µFN

]1/3

. Based on Equation 5.10 maximum shear modulus increases

with an increase in the coordination number, CN , and normal contact force, FN , from

microscopic level.

Equation 5.10 is helpful for discussion of the observed results at the macroscopic level

using the microscopic or contact observations.

5.2.6.2 Polar presentation of contact properties

The outputs of TRUBAL code are a text files including the particles and contact prop-

erties. For ease of discussing the results, some analyses were done to present the effect of

loading on contact and particle properties graphically. MATHEMATICA programming

was used to visualize the results of TRUBAL code. The programming codes were written

for 3D presentation. The details of written code for presentation of contact forces and

contact distributions are briefly discussed in this section.

If the contact points are drawn, using the output text files, the spherical distribution

achieves for normal contact forces (Figure 5.15b). In the next step, the contact force

vectors were surrounded by a sphere with unit radius. The unit sphere was divided into

the pyramids with the same slopes, θ. One pyramid was chosen for performing the anal-

yses. The pyramid was defined with a given slope angle (θ), then, the boundary surfaces

(slant faces) of the pyramid were determined (Figure 5.15a). In the next step, the normal

vectors of contacts that were located in this pyramid were determined and the average of

them was calculated (Figure 5.15b). In a given pyramid, the average of normal contact

forces (K) was the length of the desired pyramid (Figure 5.15a). Then, the analysis were

extended for all of the data to find the length of the other pyramids.

Figure 5.15c shows an example of polar distribution of normal contact forces using dis-

cussed procedure for 10000 particles subjected to anisotropic pressure. The same pro-

cedure was used for polar presentation of shear contact forces (Figure 5.15d). The unit

normal vectors of contacts were used to present the polar distribution of contacts at dif-

ferent time steps. In this case, the length of pyramid (K) was the number of contacts

which were located in the one pyramid.
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Figure 5.15: 3D polar presentation of contact forces at σ3=200 kPa and σ1=300 kPa:

(a) spherical coordination system; (b) normal contact forces distribution; (c) 3D polar

presentation of normal contact forces; (d) 3D polar presentation of shear contact forces

5.2.6.3 Contact properties

The value of contact properties in respect to the isotropic pressures for dense sample,

e=0.58, with the initial and final friction of 0.01 and 0.3 have been summarized in Table

5.2. As can be seen in Table 5.2, the value of coordination number, CN , increases slightly

with an increase in the confining pressure although the increasing of CN with p′ is not

so significant in comparison with the other contact parameters. The normal contact force

increases significantly with an increase in the isotropic pressure, p′. However, the effect of

isotropic pressure on shear contact force and contact distribution is not significant during

isotropic loading. As it is apparent from Table 5.2, shear contact force increases with an

increase in the isotropic pressure which can be discussed through the friction resistance
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and sliding of particles with an increase in the isotropic pressure. Polar distribution of

contact properties for isotropic loading are presented in Figure 5.16. As it is apparent

from this figure, the normal contact forces increase isotropically with an increase in the

confining pressure. Also, this figure shows that contact distribution is isotropic and it

remains isotropic with an increase in the confining pressure.

Table 5.2: The effect of isotropic loading on contact properties in the sample with µi=0.01

and µf=0.3

p′ e CN FN FT
FT
FN

Gmax

[kPa] [−] [−] [−] [−] [−] [MPa]

50 0.58 5.88 0.0726 0.0046 0.0629 148.1

100 0.58 5.97 0.1424 0.0042 0.0292 192.2

200 0.58 6.04 0.2806 0.0051 0.0181 249.4

300 0.58 6.08 0.4168 0.0059 0.0143 287.9
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ṕ= 100 kPa

�0.2�0.10.0
0.1

0.2 y

�0.2
�0.1
0.0
0.1

0.2

z �0.2

�0.1

0.0

0.1

0.2

x

�0.5
0.0

0.5 y

�0.5

0.0

0.5

z �0.5

0.0

0.5

x

�0.5
0.0

0.5 y

�0.5

0.0

0.5

z �0.5

0.0

0.5

x
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ṕ= 300 kPa

�0.2�0.10.0
0.1

0.2 y

�0.2
�0.1
0.0
0.1

0.2

z �0.2

�0.1

0.0

0.1

0.2

x

�0.5
0.0

0.5 y

�0.5

0.0

0.5

z �0.5

0.0

0.5

x

�0.5
0.0

0.5 y

�0.5

0.0

0.5

z �0.5

0.0

0.5

x

Fig. 14: Distribution of contacts, normal and shear forces at q=200 kPa

M.Goudarzy et al. Micro and macro mechanical assessment of stiffness in granular packing containing fine materials 2 / 2Figure 5.16: The effect of isotropic pressure on contact properties of dense glass bead

packing, µi = 0.01 and µf = 0.3
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Table 5.3: The effect of stress induced anisotropy on contact parameters in the sample

with µi=0.01 and µf=0.3, stress path GB-I

σ3 σ1 q e CN FN FT
FT
FN

Gmax

[kPa] [kPa] [kPa] [−] [−] [−] [−] [−] [MPa]

200 200 0 0.58 6.04 0.2951 0.0123 0.0417 249.4

200 250 50 0.58 6.03 0.3042 0.0224 0.0735 259.6

200 300 100 0.58 5.98 0.3297 0.0402 0.1219 265.6

200 350 150 0.58 5.82 0.3635 0.0549 0.1511 256.3

200 400 200 0.58 5.53 0.4116 0.0698 0.1695 232.2

200 420 220 0.58 5.33 0.4407 0.0775 0.1759 201.6

Table 5.4: The effect of stress induced anisotropy on contact parameters in the sample

with µi=0.01 and µf=0.3, stress path GB-II

σ3 σ1 q e CN FN FT
FT
FN

Gmax

[kPa] [kPa] [kPa] [−] [−] [−] [−] [−] [MPa]

50 100 50 0.58 5.07 0.1156 0.0191 0.1651 110.49

100 200 100 0.58 5.32 0.2157 0.0360 0.1670 166.07

150 300 150 0.58 5.37 0.3206 0.0538 0.1678 193.40

200 400 200 0.58 5.53 0.4115 0.0698 0.1695 232.20

220 440 220 0.58 5.56 0.4509 0.0766 0.1698 240.73

300 600 300 0.58 5.50 0.6214 0.1047 0.1686 261.44

The obtained values for CN , FN and FT for stress path GB-I are summarized in Table

5.3. As can be seen in Table 5.3, coordination number and FT/FN are significantly af-

fected by stress induced anisotropy at stress path GB-I. The results show the decreasing

of coordination number and increasing of FT/FN with an increase in the vertical stress

which have the negative effect on the shear stiffness of packing.

The results of DEM analysis for stress path GB-II are summarized in Table 5.4. As can

be seen in Table 5.4, coordination number increases with an increase in the value of q at

this stress path. Furthermore, the results show that the effect of stress induced anisotropy

on the value of FT/FN is not significant in comparison with the stress path GB-I.

The effect of stress induced anisotropy on maximum shear modulus can be explained
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through the effect of stress state on contact properties which are presented for stress

paths GB-I and GB-II in Figure 5.17 and Figure 5.18 respectively.

Figure 5.17 reveals that the normal contact forces in the vertical direction increases sig-

nificantly with an increase in the vertical stress, σ1. However, the value of normal contact

forces in horizontal direction was constant and equal to the obtained normal contact forces

for specimen subjected to isotropic loading. Also, this figure shows the increasing of shear

contact forces (FT ) with an increase in the vertical stress. The other micro-mechanical

parameter, contact distribution, is also affected with vertical stress. The results show

that the contact distribution is oriented to the vertical direction at this stress path.

Figure 5.18 shows the effect of stress induced anisotropy on contact parameters at stress

path GB-II. As can be seen in this figure, the normal contact forces increases significantly

in all of the directions with an increase in the shear stress, q.

Also, Figure 5.18 shows that the shear contact forces (FT ) increases with an increase in

the vertical stress. The contact distributions are oriented to the vertical direction and

has the same orientation for all of the stress states at this stress path.

The experimental and numerical results on glass bead packing revealed that the maximum

shear modulus was affected by stress induced anisotropy which was strongly depended on

the applied stress paths. For explaining the Gmax − q curves, Figure 5.9, the effect of

stress induced anisotropy on contact properties are compared in some given stress states,

e.g. at q equal to: 50, 100, 150 and 220kPa.

Table 5.5: The effect of stress induced anisotropy on contact parameters

q stress path CN FN FT
FT
FN

Gmax

[kPa] [−] [−] [−] [−] [−] [MPa]

50
GB-I 6.032 0.3042 0.0224 0.0735 259.6

GB-II 5.0672 0.1156 0.01908 0.1650 110.491

100
GB-I 5.979 0.329 0.04018 0.12186 265.6

GB-II 5.324 0.2157 0.03588 0.1663 166.0691

150
GB-I 5.821 0.3635 0.0549 0.1511 256.3

GB-II 5.529 0.3208 0.05378 0.1676 193.4

220
GB-I 5.327 0.4407 0.0775 0.1759 201.06

GB-II 5.557 0.4511 0.07656 0.1697 240.73
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At q=50 kPa, in Figure 5.9, the value of Gmax at stress path GB-II is less than the

obtained value for Gmax at the same shear stress for stress path GB-I. The results of

DEM simulation for this stress state are summarized in Table 5.5. As can be seen in this

table, at the shear stress of 50 kPa the value of coordination number, CN , and normal

contact force at stress path GB-II are less than stress path GB-I and shear contact force is

also more than stress path GB-I, therefore, the stiffness is less than the stress path GB-I

at this stress stat. As can be seen in Figure 5.9, for shear stress of 100 and 150 kPa, the

value of Gmax at stress path GB-II is less than the obtained values for Gmax at the same

shear stress for stress path GB-I.
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Figure 5.17: Polar presentation of contact properties in specimen subjected to stress path

GB-I
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At the shear stress of 100 and 150 kPa, the value of CN at stress path GB-I is more than

stress path GB-II and also the value of FT/FN for the stress path GB-I is less than GB-II,

therefore, the value of Gmax at stress path GB-I is more than obtained value at stress

path GB-II.

As can be seen in Figure 5.9, at shear stress of 220 kPa, the value of Gmax at stress path

GB-I is less than the obtained values for Gmax at the same shear stress at stress path

GB-II. At the shear stress of 220 kPa, as can be seen in Table 5.5, the value of CN at

stress path GB-II is more than stress path GB-I and also the value of FT/FN for the stress

path GB-II is less than GB-I, therefore, Gmax at stress path GB-I is less than Gmax at

stress path GB-II.
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Figure 5.18: Polar presentation of contact properties in specimen subjected to stress path

GB-II
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5.2.7 Summary

A set of experiments was performed on glass beads samples by using a resonant column

device under different stress paths, namely isotropic compression, triaxial compression

(GB-I) and constant stress ratio K deformation (GB-II). The results revealed:

• The maximum shear modulus was a function of the stress induced anisotropy, as

determined for the specific stress paths. That was the variation of Gmax with

isotropic/deviatoric stress was not unique but depends on the previous history.

Existing analytical relations fail in describing this extra dependence, either when

Hardin’s relationship is used or the contribution of (induced) deviatoric stress is

included through Roesler’s relation. Along with laboratory tests, DEM simulations

were performed and proposed a micro-mechanical interpretation of the peculiar be-

havior observed.

• It is apparent from experimental results that the maximum shear modulus was sig-

nificantly affected with stress induced anisotropy at different stress paths. Therefore,

DEM analysis were conducted on a granular packing to find the effect of stress in-

duced anisotropy on contact properties for various stress paths. From macroscopic

point of view, the maximum shear stiffness of granular packing increased with an

increase in the mean effective stress which was due to the increasing of the normal

contact forces at contact points from the microscopic point of view.

• DEM results revealed that Coordination Number, CN , is affected significantly by

sample preparation. Starting from the numerical observations a modified version

of Hardin’s relationship is proposed, that included a dependence of the maximum

shear modulus on the coordination number.

• The results show that the effect of stress induced anisotropy on maximum shear

modulus strongly depends on the applied stress path. The experimental and nu-

merical results revealed that at the same q, maximum shear modulus is different in

the specimens which are consolidated at stress paths GB-I, GB-II. Micro-mechanical

observations show that the increasing of FT/FN and decreasing of coordination num-

ber in stress path GB-I is faster than the other stress path. Therefore, with reference

to Equation 5.10, the stiffness decreases with an increase in the vertical stress in

this stress path. Furthermore, the DEM results show that the coordination number,

CN , and normal contact forces, FN , increase with an increase in the value of σ1 at
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stress path GB-II and isotropic stress path. Therefore, stiffness increases with an

increase in the σ1 at these stress paths in comparison with stress path GB-I.

• The results at macroscopic level reveal that Roesler’s relationship with coordination

number function can be used with sufficient accuracy to predict the maximum shear

modulus in the specimens subjected to anisotropic loading.
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5.3 Hostun sand: Experimental results and empirical

relationships

5.3.1 overview

A series of stress induced anisotropic tests were conducted on dry Hostun sand with

a relative density of 35%-90% to evaluate the effect of the stress path on small and

intermediate strain properties (Gmax, G(γ) and η(γ)). From the experimental study

using true triaxial device, Sadek (2006) concluded that the effect of the direction of sand

pluviation on maximum shear modulus of Hostun sand is not significant. This means that

the effect of pluviation of Hostun sand on the fabric of sample is not significant. Therefore,

in this section, all of the samples were prepared by a dry air pluviation method (Section

3.4). Stress induced anisotropy was applied to the samples by different stress paths (Figure

3.14a). The experimental procedure was explained in section 3.6. The main results of this

experimental program are presented in this Section. For ease of discussion, this section

is divided into three main parts. In part one, the effect of stress induced anisotropy on

the small strain properties (Gmax) of dry Hostun Sand is presented. The effect of stress

induced anisotropy on intermediate strain properties (G(γ) and η(γ)) of dry Hostun Sand

for different stress paths will be discussed in part two. In part three, the effect of stress

induced anisotropy on the reference shear strain, γr, (Equation 2.10) will be presented.

These results are used to develop an empirical relationship to predict the value of G/Gmax

of samples subjected to stress induced anisotropy.

5.3.2 Test results on Gmax

The effects of void ratio and stress induced anisotropy on the maximum shear modulus

(Gmax) of dry Hostun Sand are explained in this section. Adopted stress paths are the

same as Figure 3.14a.

• Stress path I

The experimental results for this stress path are presented in Figure 5.19. The test data

in Figure 5.19a reveal that the value of Gmax increases with an increase in the shear stress,

q, for this stress path. Also, the significant effect of confining pressure on the maximum

shear modulus can be concluded from Figure 5.19a.

Figure 5.19b reveals that Gmax decreases with an increase in the void ratio, e. The

experimental test data for stress path I show that the density of sample not only changes
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the value of Gmax but can also have an effect on the trend of the Gmax − q curve in

comparison with the dense sample. As can be seen in Figure 5.19b, the maximum shear

modulus, Gmax, increases with an increase in q up to q of 300 kPa, but the slope of the

Gmax − q curve of the loose sample (e=0.91) is different to the dense sample (e=0.71)

for q of more than 300 kPa. Gmax was normalized with respect to the Gmax obtained for

isotropic loading. This normalization is helpful to show the effect of density on the trend

of the observed results.
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Figure 5.19: Gmax− q curves for stress path I: (a) the effect of σ3, e = 0.73; (b) the effect

of the void ratio
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Figure 5.20a shows normalized Gmax versus q in the samples with a void ratio of 0.73. This

figure shows that the effect of isotropic confining pressure on the trend of normalized Gmax

versus q is not significant. However, Figure 5.20b shows the significant effect of density on

results which is due to the effect of anisotropic loading on the fabric of the samples. For

instance, during anisotropic loading, due to the compaction of loose sample, the value of

the coordination number increases faster and, consequently, the maximum shear stiffness

increases faster than the dense sample.

• Stress path II

The experimental test results for stress path II are presented in Figure 5.21. As it is

apparent from Figure 5.21a, the value of Gmax increases slightly with an increase in the q

and it then decreases significantly with a further increase in q (q > 0.7p′). This figure also

shows that the value of Gmax is significantly affected by p′. The test data show that the

value of Gmax increases with an increase in the value of p′ (Figure 5.21a). Furthermore,

the test results show that the value of Gmax decreases with an increase in the void ratio

(Figure 5.21b) although the trend of results for the loose and dense samples is obviously

different, especially for q > 0.7p′ for this stress path. This difference is due to the change

of coordination number and void ratio, during the compaction of the sample, which has

a direct effect on the value of Gmax.
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Figure 5.23: Gmax versus q for Hostun Sand with e0 = 0.72 and stress paths I, II and III

• Stress path III

Figure 5.22 presents the effect of stress induced anisotropy on the maximum shear mod-

ulus for stress path III. As is apparent from Figure 5.24a, the value of Gmax increases

significantly with an increase in the value of q for this stress path. This figure shows that
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the value of Gmax increases with an increase in the stress ratio, K = σh/σv. Furthermore,

the experimental results at stress path III show that the value of Gmax decreases with an

increase in the void ratio (Figure 5.22b).

For example, Figure 5.23 shows the effect of stress induced anisotropy at different stress

paths on the maximum shear modulus of Hostun Sand with a relative density of 86%. For

stress path I, this figure shows that the maximum shear modulus, Gmax, increases with

an increase in the value of q but the rate of increase in Gmax decreases significantly with

q of more than 200 kPa. For stress path II, Gmax increases slightly with an increase in

the value of q, but Gmax decreases significantly with q of more than 150 kPa (q > 0.7p′)

(Figure 5.23). For stress path III, experimental results reveal that Gmax increases as long

as q increases (Figure 5.23).

5.3.2.1 Empirical relationship for Gmax

Hardin’s relation (Equation 2.8) and Roesler’s relation (Equation 2.9) were used to predict

the maximum shear modulus in the soil samples subjected to stress induced anisotropy.

Hardin’s void ratio function (Equation 4.6) was also used to capture the effect of the

void ratio in these relationships. As discussed in Chapter 2, Hardin believed that Gmax

is independent of shear stress. Thus, Equation 2.8 with sufficient accuracy can be used

to predict the value of Gmax but the average of stresses (σ1+σ3
2

) must be used instead of

p′. According to the performed regressions, constant parameters A and n in Hardin’s

relation (Equation 2.8) were equal to 0.83 and 0.44 respectively (Chapter 4). Roesler’s

relation (Equation 2.9) includes four constant parameters: x in void ratio function, A

constant parameters of Equation 2.9 and stress exponents (n1 and n3). Parameters x and

A in Roesler’s relation were assumed to be the same as the values obtained for Hardin’s

relation. However, the unknown values of nv and nh were determined by regression of the

test results for stress path I to get the best value for R2 (Figure 5.24). Then, the average

of the obtained values for the stress exponents, n3 and n1, were used to predict the value

of Gmax for stress paths II and III.

The test data for stress path I were used for determining the value of stress exponents

in Roesler’s relation. Gmax was normalized with respect to the Af(e)(σn3
3 ), where A and

f(e) were the same as the determined values for Hardin’s relation and n3 was assumed to

be a value less than 0.5. Normalized shear modulus were drawn versus vertical stress, σ1.

Figure 5.24a shows an example of normalized shear modulus versus σ1 for a sample with

e0 = 0.72. The value of nh was changed to get a value close to 1 for K factor in Figure

5.24a.
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Figure 5.24: Fitted curves to the experimental data for stress paths I: (a) normalized

Gmax − σv curve; (b) Gmax − σv curves for samples with various densities

This procedure was performed for all of the samples subjected to stress induced anisotropy

at stress path I. Figure 5.24b shows the test data for samples with various densities, the

solid lines fitted are curves predicted with Roesler’s relation. The average value of n1 and

n3 were used as stress exponents in Roesler’s relation. The average value of the stress

exponents, n3 and n1, in Roesler’s relationship (Equation 2.9), were equal to 0.23 and

0.21 respectively which confirms that the effect of confining pressure on the maximum

shear modulus is more than the effect of vertical stress.

Figure 5.25a and Figure 5.25b show the value of Gmax, predicted with Equation 2.8 and

Equation 2.9, in comparison with the measured values for stress paths I, II and III. Figure

5.25a shows that both of the relations (Equation 2.8 and Equation 2.9) predict the value of

Gmax with the same accuracy up to the vertical stress of 400 kPa for stress path I and 300

kPa for stress path II. However, at a vertical stress of more than 400 kPa, in a dense sample

volumetric changes in the sample was not significant during RC tests, therefore, the rate

of increase in the maximum shear modulus was affected by contact forces at a microscopic

level (contact force ratio). The impact of shear force can be observed through Equation

2.8 in comparison with Equation 2.9. As can be seen in Figure 5.25a, the accuracy of the

predicted Gmax using Equation 2.9 is more than Equation 2.8, whereas Equation 2.8 is

independent of shear stress. In the loose sample due to the compaction of the sample,

the coordination number increases which has a direct effect on Gmax. Therefore, in the

loose sample the value of Gmax increases with an increase in the value of q at stress path

I (Figure 5.25a). The same behaviour was observed for samples subjected to stress path

II. Figure 5.25b shows an example of measured maximum shear modulus for stress path
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III. The results for stress path III (Figure 5.25b) show that Equation 2.8 and Equation

2.9 can be used to predict the value of Gmax with the same accuracy. Figure 5.26 shows

the accuracy of the predicted Gmax using Equation 2.8 and Equation 2.9 in comparison

with the measured values for stress paths I, II and III. Figure 5.26a shows the predicted

Gmax using Equation 2.8 versus measured Gmax for dry Hostun Sand with a different void

ratio.
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Figure 5.26b shows the predicted results using Equation 2.9 versus the experimental re-

sults. A comparison of Figure 5.26a and Figure 5.26b reveals that the predicted results

using Equation 2.9 have a higher accuracy in comparison with the predicted results using

Equation 2.8 for stress path I. The same conclusion can be extracted for the other stress

paths. However, as can be seen in Figure 5.26e and Figure 5.26f, both of the relation-

ships, Equation 2.8 and Equation 2.9, predict the maximum shear modulus with the same

accuracy for stress path III.
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Figure 5.26: The accuracy of predicted Gmax with empirical relationships and determined

fitting parameters based on the test data for stress path I: (a) Hardin’s relationship for

stress path I; (b) Roesler’s relation for stress path I; (c) Hardin’s relation for stress path

II; (d) Roesler’s relation for stress path II; (e) Hardin’s relation at stress path III; (f)

Roesler’s relation for stress path III
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5.3.3 Published data sets on Gmax

The experimental results for Gmax obtained from the resonant column device have been

compared with previous studies in Figure 5.27. It must be noted that the published

results for stress path I are presented in this Figure. As can be seen in this figure, the

effect of stress induced anisotropy on dense samples for stress path I depends on the

stress ratio. Stiffness increases with an increase in vertical stress up to stress ratio 2 and

it then decreases with a further increase in vertical stress for this stress path which is in

agreement with the observed experimental results in this study.

5.3.4 Test results on G(γ)

The resonant column tests were conducted on the samples which were consolidated at

stress paths I, II and III to assess the effects of stress path and stress induced anisotropy

on the curves of damping ratio and modulus ratio.

Figure 5.28 shows the effect of shear strain on the shear modulus of clean Hostun sand

with a relative density of 86% − 90% which were subjected to isotropic and anisotropic

stress conditions at stress paths I, II and III respectively.
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Figure 5.28: G versus shear strain for clean Hostun Sand, Dr=72% − 75%: (a) isotropic

loading; (b) anisotropic loading at stress path I; (c) anisotropic loading at stress path II;

(d) anisotropic loading at stress path III

Figure 5.28 shows that the shear stiffness is constant and equal to the maximum shear

modulus up to the shear strain of 1E-5. Figure 5.28b shows that the shear stiffness in-

creases with an increase in the vertical stress (σ1) up to the vertical stress of 600 kPa.

However, for stress path II (Figure 5.28c), the shear stiffness increases slightly with an

increase in the shear stress, up to the shear stress of less than 0.7p′, and it then decreases

with further increases in the shear stress. The results for stress path III (Figure 5.28d)

show the shear stiffness increases with an increase in the confining pressure at this stress

path. Additionally, the presented results show the dependency of shear stiffness on the

shear strain in the samples subjected to the anisotropic loading for stress paths I, II and
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III.

Figure 5.29 shows the effect of stress induced anisotropy on the damping ratio versus the

shear strain for isotropic and anisotropic loading at stress paths I, II and III respectively.

For isotropic loading, the experimental test data show that damping ratio decreases sig-

nificantly with an increase in the confining pressure (Figure 5.29a). Figure 5.29b shows

the effect of stress induced anisotropy on damping ratio for stress path I. The results show

that damping ratio decreases slightly with an increase in the vertical stress. Figure 5.29c

shows that the effect of shear stress on damping ratio for stress path II.
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Figure 5.29: Damping ratio, η, versus shear strain for clean Hostun Sand, Dr=72%−75%:

(a) isotropic loading; (b) anisotropic loading at stress path I; (c) anisotropic loading at

stress path II; (d) anisotropic loading at stress path III
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The results reveal that damping ratio decreases slightly with an increase in the shear

stress up to shear stress of 40 kPa and it then increases with further increase in the shear

stress (Figure 5.29c). For stress path III, however, the damping ratio decreases with an

increase in the confining and vertical stress (Figure 5.29d). As it is apparent from Figure

5.29, the effect of stress induced anisotropy on damping ratio for isotropic loading and

stress path III are more obvious than stress paths I and II. The relationship between

G/Gmax − logγ curves for dry Hostun sand subjected to isotropy and stress induced

anisotropy are presented in Figure 5.30. For isotropic loading, the experimental test

data show that G/Gmax increases significantly with an increase in the confining pressure

(Figure 5.29a).
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Figure 5.30: G/Gmax versus shear strain for clean Hostun Sand with Dr=72% − 75%

subjected to: (a) isotropic loading; (b) anisotropic loading at stress path I; (c) anisotropic

loading at stress path II; (d) anisotropic loading at stress path III

For stress path I, the experimental test data show that G/Gmax− logγ curve was slightly

shifted to higher values in comparison with the results for isotropic loading at the confining

pressure of 200 kPa (Figure 5.30b). Since the test data are close to each other the effect

of stress induced anisotropy on G/Gmax − logγ curves is not so obvious in Figure 5.30b.

Figure 5.30c shows the effect of stress induced anisotropy on G/Gmax − logγ curve for

stress path II. The results reveal that G/Gmax increases slightly with an increase in the

shear stress up to shear stress of 40 kPa and it then decreases with further increase in

the shear stress (Figure 5.30c). For stress path III, however, the G/Gmax increases with

an increase in the confining and vertical stress (Figure 5.30d). Figure 5.30 also shows the
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effect of stress induced anisotropy on G/Gmax for isotropic loading and stress path III are

more obvious than stress paths I and II. Figure 5.31 shows the variation of γr in respect

to σ1 for all of the applied stress paths.

Figure 5.31 shows that the value of γr increases significantly with an increase in the

confining pressure. This figure shows that the value of γr increases slightly with an

increase in the vertical stress in the samples subjected to anisotropic loading at stress

path I. As can be seen in Figure 5.31, at stress path II, the value of γr increases slightly

with an increase in the shear stress up to shear stress of less than 40 kPa and it then

decreases significantly with an increase in the shear stress. The value of γr increases with

an increase in the confining pressure for the sample subjected to stress path III (Figure

5.31).
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Figure 4 : γr versus vertical stress (σv) at isotropic stress state, stress path I and stress path
II and stress path III for Hostun sand, e0 = 0.71− 0.74Figure 5.31: The effect of stress induced anisotropy on reference shear strain

5.3.4.1 Empirical relationship

Equation 2.13 and Equation 2.14 are not valid to determine the value of γr for samples

subjected to the anisotropic loading at stress path I (Tatsuoka et al. 1979). Therefore, the

back analysis of the test data, using Equation 2.10, was used to determine the value of

γr from the experimental test data for sample subjected to the isotropic and anisotropic

loading.

Equation 2.15 was used to predict the value of γr in the samples subjected to anisotropic

loading. This relation is based on the mean effective stress (p′). However, the experimental
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test data show that the value of γr is affected by shear stress at various stress paths (Figure

5.31). Therefore, in this study, Equation 2.15 was modified as a function of principle stress

components instead of mean effective stress (Equation 5.11):

γr = γr1

[
σ
′
1

pa

]m1
[
σ
′
3

pa

]m3

(5.11)

where, γr is the reference shear strain, γr1 is the reference shear strain for isotropic loading

at p′= 100 kPa, σ1 and σ3 are the maximum and minimum principle stress components

respectively, and m1 and m3 are exponents of vertical and horizontal stresses respectively.

Equation 5.11 was used to predict the value of γr for samples subjected to isotropic and

anisotropic loading at different stress paths. γr1 is the value of γr for a certain isotropic

pressure (p′=100 kPa). Afterwards, Equation 5.11 was fitted to the data for stress path I in

Figure 5.31 to find the parameters m1 and mh (solid line in Figure 5.31). By performing

this regression, the values of 0.08 and 0.31 were obtained for m1 and m3 respectively.

Determined fitting parameters (m1 and m3) for stress path I were used in Equation 5.11

to predict the value of γr for a sample subjected to the other stress paths (dashed lines, in

Figure 5.31). As can be seen in Figure 5.31, the results show a good agreement between

the predicted and measured values.

5.3.4.2 Prediction of G/Gmax

The normalized shear strain, γ/γr, is the key parameter to predict the G/Gmax using

Equation 2.10 and Equation 2.12. To predict the G/Gmax for the sample subjected to

anisotropic loading, the shear strain was normalized with respect to the γr which was

obtained from Equation 5.11.

Figure 5.32 shows the G/Gmax curves versus the normalized shear strain for the samples

subjected to the isotropic (Figure 5.32a) and anisotropic loading (Figure 5.32b, Figure

5.32c and Figure 5.32d). In Figure 5.32, the solid lines are the predicted results using

Equation 2.12, where the fitting parameters a and b were equal to 0.05 and 1, and γr

was determined with Equation 5.11. Figure 5.33 shows the damping ratio versus the

normalized shear strain for all of the stress paths (Isotropic (Figure 5.33a), anisotropic

loading (Figure 5.33b, Figure 5.33c and Figure 5.33d)). The predicted curves, using

Equation 2.16, have been added as a solid lines in these figures. The values of ηmin, c1

and c2 in Equation 2.16 were equal to 0.0102, 0.393 and 0.808 respectively. The results

show a good agreement between predicted and measured results.
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stress path III
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Figure 5.32: G/Gmax versus normalized shear strain of clean Hostun Sand with Dr=72%−
75% and subjected to: (a) isotropic loading; (b) anisotropic loading at stress path I; (c)

anisotropic loading at stress path II; (d) anisotropic loading at stress path III
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(d)

Figure 5.33: Damping ratio, η, versus normalized shear strain for clean Hostun Sand with

Dr=72%− 75% and subjected to: (a) isotropic loading; (b) anisotropic loading at stress

path I; (c) anisotropic loading at stress path II; (d) anisotropic loading at stress path III
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5.3.5 Summary

The stress induced anisotropic tests were conducted on Hostun sand specimens. In this

experimental study, Hostun Sand was subjected to four main stress paths: isotropic,

stress path I, stress path II and stress path III. For isotropic loading confining pressure

was increased from 55 kPa to 200 kPa. For stress path I, confining pressure (σ3) was

kept constant at 200 kPa and vertical stress was increased. For stress path II, p′ was

kept constant at 200 kPa and q was increased and finally, for stress path III, confining

pressure was increased to 100, 200 and 300 kPa then, the vertical stress was increased up

to σ1 = 2σ3. After that, the resonant column tests were conducted on the samples.

Measured results for induced anisotropy tests on dry Hostun sand under three different

stress paths were presented in this work. Experimental results showed that the impact of

stress induced anisotropic on small and intermediate strain properties of dry Hostun sand

(Gmax, G(γ) and η(γ)) depends on the adopted stress path. In stress path I, the effect

of stress ratio was significant on Gmax but the influence of stress ratio on G/Gmax and

damping ratio was not significant. At stress path II and III, Gmax, G(γ) and η(γ) were

significantly affected by stress induced anisotropy. The experimental results on Hostun

sand samples showed the significant effect of density on maximum shear modulus of sample

subjected to stress induced anisotropy although the effect of density on G/Gmax and η

was not significant.



6 Conclusions and recommendations

6.1 The effect of fines content

Resonant column tests were conducted on clean Hostun Sand to evaluate the influence of

confining stress, p′, and void ratio, e, on Gmax, G(γ) and η(γ). Then the effect of fines on

Gmax, G(γ) and η(γ) was investigated with a systematic increase in fines content, fc up

to 40%. The major outcomes of the study are:

• A decrease in Gmax with an increase in e and an increase in Gmax with an increase

in p′ was observed for clean Hostun Sand. Hardin’s relation is adequate to predict

Gmax with both Hardin’s and Jamiolkowski’s void ratio function, f(e). A systematic

increase in fines content, fc up to 40% in RC tests showed that Gmax decreased with

an increase in fc which is consistent with earlier studies for sand with non-plastic

fines.

• A micro-structural study with a micro CT scan revealed that sand with fines devel-

ops two different micro-structures: “fines-in-sand” and “sand-in-fines”. For “fines-

in-sand”, fine particles were partially active in the sand force structure and for

“sand-in-fines”, sand particles were floating in fines particles. The void ratio, e did

not represent the same force structure as clean sand and is not suitable for a consis-

tent comparison. The equivalent granular void ratio, e∗, appears to be a consistent

state parameter for density.

• The conversion of e to e∗ requires two parameters, b and m. b can be obtained from

soil grading properties with a fitting parameter λ=0.30 as in Rahman et al. (2008)

and m can be obtained from correlation as in Figure 4.19. However, the parameters,

λ and m can be further optimized by back analysis. Therefore, five regression

analyses were conducted, including Rahman’s method that does not require back

analysis. The best regression model was obtained when λ and m were back analyzed

(regression V). The second best model was obtained when only λ was determined by

back analysis of test data (regression III). The back analyzed λ was linearly related
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to p′ which can be used to predict λ for Hostun sand.

To predict Gmax as a function of e∗ and p′, Rahman’s relation with the same proposed

fitting parameters (regression I) can be used when fc is less than fthr and the m

value is used for fc greater than fthr (regression II and regression III).

• Jamiolkowski’s f(e) gives a better fit than Hardin’s f(e) for a large number of data

points with fc. An inverse power function of e appeared to be a better function

than a function with a limiting void ratio constant, x.

These conclusions are derived from the test data for gap graded sand with non-plastic

fines and may not be applicable to sand with plastic fines.

Furthermore, a series of tests was conducted on glass bead mixtures containing 0, 10, 20,

30, 40 and 50 percentage fine glass beads using the resonant column test and piezoelectric

elements. The outcomes of the study are:

• Gmax, Mmax and Emax in glass bead mixtures decrease with an increase in fines

content up to 30% fc and then decrease with further increase in fc.

• The conversion of e to e∗ requires two parameters, b and m. b was obtained from

particle size properties with a fitting parameter λ=0.30 as in Rahman et al. (2008)

and m was optimized by back analysis of test data for Gmax. The results confirmed

the applicability of e∗ in Hardin’s relation to predict the value of Gmax, Mmax and

Emax.

• Micro-CT imaging shows that the number of contacts between coarse particles de-

creases with an increase in the fines content and therefore, stiffness decreases with

fines content.

6.2 Stress induced anisotropy

The small and intermediate strain properties of dry Hostun Sand subjected to three

different stress paths were presented in this paper. Experimental results show that the

impact of stress induced anisotropic on the small and intermediate strain properties of

dry Hostun sand (Gmax, G(γ) and η(γ)) depends on the adopted stress path. In stress

path I, the effect of the stress ratio on Gmax was significant but the influence of the stress

ratio on G/Gmax and damping ratio was not significant. At stress paths II and III, Gmax,

G(γ) and η(γ) were significantly affected by stress induced anisotropy. The experimental
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results on Hostun Sand samples show a significant effect of density on the maximum

shear modulus of the sample subjected to stress induced anisotropy although the effect

of density on G/Gmax and η was not significant.

The results show that the Stokoe relationship, Equation 2.15, can be used in terms of

stress components, Equation 5.11, to predict the value of γr in the soil samples subjected

to stress induced anisotropy.

6.3 DEM simulations

It is apparent from the experimental and numerical results that the maximum shear

modulus was significantly affected by stress induced anisotropy at different stress paths.

Therefore, DEM analyses were conducted on granular packings to find the effect of stress

induced anisotropy on contact properties at various stress paths. From a macroscopic

point of view, the maximum shear stiffness of granular packing increased with an increase

in the confining pressure which was due to the increase in the normal contact forces at

contact points from the microscopic point of view. Furthermore, the DEM results reveal

that Coordination Number, CN , was affected significantly by sample preparation. From

the performed regressions, the effect of the coordination number on the maximum shear

modulus was captured through the coordination number function in Hardin’s relation.

The results show that the effect of stress induced anisotropy on the maximum shear mod-

ulus strongly depends on the applied stress path. The experimental and numerical results

reveal that for constant q, the maximum shear modulus was different in the specimens

which were consolidated at isotropic and anisotropic loading at stress paths GB-I and GB-

II. Micro-mechanical observations show that the increase in FT/FN and decrease in the

coordination number for stress path GB-I was faster than the other stress paths. There-

fore, with reference to Equation 5.10, stiffness decreases with an increase in the shear stress

in this stress path. Furthermore, the DEM results show that the coordination number,

CN , and normal contact forces (FN) increase with an increase in the value of q at stress

path GB-II and the isotropic stress path. Therefore, stiffness increases with an increase

in the σv at these stress paths in comparison with stress path GB-I. Additionally, the re-

sults at the macroscopic level reveal that Roesler’s relation with the coordination number

function can be used with sufficient accuracy to predict the maximum shear modulus in

the specimens subjected to anisotropic loading.
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6.4 Suggested future works

This thesis could be developed further in the future. Based on the findings of this study

further research is suggested as follows:

• Most of the previous studies have been conducted on the fine in sand mixtures.

However, the studies on sand in fine mixtures are rare and additional studies are

essential to determine the effects of particle characteristics, e.g. size and shape of

fine particles, on the small and intermediate strain properties of granular materials.

• There is no relationship to predict the value of m in e∗ for the sand in fine mixture.

Therefore, additional systematic studies on the mixtures containing fines content

beyond the fthr must be conducted to determine the empirical relation between the

parameter m and the particle characteristics of fine and coarse particles.
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Appendix A

Table A.1: Summary of calibrations I, II and III, Hardin’s void ratio function
Calibration I Calibration II Calibration III

Eq. 4.3 kHf(e
∗) Eq.4.8 Eq.4.3, Eq.4.4 kHf(e

∗) Eq.4.8 Eq.4.3, Eq.4.4 kH .f(e
∗) Eq.4.8

p [kPa] λ R2 R2 RMSD λ m R2 R2 RMSD λ m R2 R2 RMSD

55 0.3 0.90 0.95 6,40 0.3 0.12 0.92 0.98 3.59 0.24 0.12 0.92 0.98 3.89

80 0.3 0.76 0.96 7.54 0.3 0.12 0.89 0.97 3.88 0.31 0.12 0.89 0.97 3.81

110 0.3 0.72 0.97 8.86 0.3 0.12 0.87 0.93 4.44 0.37 0.12 0.90 0.95 3.92

140 0.3 0.66 0.88 10.25 0.3 0.12 0.84 0.91 5.27 0.40 0.12 0.90 0.94 4.30

170 0.3 0.45 0.77 11.35 0.3 0.12 0.85 0.92 5.93 0.43 0.12 0.91 0.95 4.52

200 0.3 0.34 0.77 12.81 0.3 0.12 0.79 0.92 7.08 0.51 0.12 0.89 0.96 5.12

Overall R2 & RMSD 0.86 8.92 Overall R2 & RMSD 0.94 5.18 Overall R2 & RMSD 0.96 4.29

Table A.2: Summary of calibrations I, II and III, Jamiolkowski’s void ratio function
Calibration I Calibration II Calibration III

Eq.4.3 kJf(e
∗) Eq.4.8 Eq.4.3, Eq.4.4 kJf(e

∗) Eq.4.8 Eq.4.3, Eq.4.4 kJ .f(e
∗) Eq.4.8

p [kPa] λ R2 R2 RMSD λ m R2 R2 RMSD λ m R2 R2 RMSD

55 0.3 0.9 0.98 3.61 0.3 0.12 0.92 0.99 3.12 0.24 0.12 0.92 0.99 3.05

80 0.3 0.92 0.98 3.73 0.3 0.12 0.96 0.98 2.73 0.31 0.12 0.96 0.98 2.76

110 0.3 0.89 0.97 4.45 0.3 0.12 0.96 0.96 2.83 0.37 0.12 0.96 0.96 2.74

140 0.3 0.86 0.88 5.48 0.3 0.12 0.95 0.96 3.34 0.40 0.12 0.96 0.97 2.94

170 0.3 0.82 0.90 6.46 0.3 0.12 0.93 0.96 3.97 0.43 0.12 0.96 0.98 3.26

200 0.3 0.74 0.92 7.83 0.3 0.12 0.90 0.97 4.97 0.51 0.12 0.94 0.98 3.99

Overall R2 & RMSD 0.94 5.16 Overall R2 & RMSD 0.97 3.58 Overall R2 & RMSD 0.98 3.15

Table A.3: Summary of calibrations IV and V, Hardin’s void ratio function, m is a

function of fc
Calibration IV Calibration V

Eq.4.3, Eq.4.4 kHf(e
∗) Eq.4.8 Eq.4.3, Eq.4.4 kHf(e

∗) Eq.4.8

p [kPa] λ m30 m40 R2 R2 RMSD λ m30 m40 R2 R2 RMSD

55 0.3 0.12 0.14 0.93 0.98 4.15 0.24 0.12 0.14 0.93 0.98 4.40

80 0.3 0.11 0.14 0.91 0.97 3.99 0.31 0.11 0.13 0.92 0.97 3.91

110 0.3 0.11 0.14 0.89 0.93 4.52 0.37 0.11 0.14 0.93 0.95 4.01

140 0.3 0.11 0.14 0.87 0.92 5.19 0.40 0.11 0.14 0.93 0.94 4.20

170 0.3 0.11 0.14 0.86 0.92 5.80 0.43 0.11 0.14 0.92 0.96 4.30

200 0.3 0.11 0.14 0.81 0.93 6.72 0.47 0.11 0.14 0.91 0.97 4.68

Overall R2 & RMSD 0.95 5.18 Overall R2 & RMSD 0.96 4.26
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Table A.4: Summary of calibrations IV, V, Jamiolkowski’s void ratio function, m is a

function of fc
Calibration IV Calibration V

Eq.4.3, Eq.4.4 kJf(e
∗) Eq.4.8 Eq.4.3, Eq.4.4 kJf(e

∗) Eq.4.8

p [kPa] λ m30 m40 R2 R2 RMSD λ m30 m40 R2 R2 RMSD

55 0.3 0.12 0.14 0.93 0.99 2.98 0.24 0.12 0.14 0.93 0.99 2.90

80 0.3 0.11 0.14 0.96 0.98 2.46 0.31 0.11 0.13 0.96 0.98 2.46

110 0.3 0.11 0.14 0.97 0.97 2.50 0.37 0.11 0.14 0.97 0.97 2.40

140 0.3 0.11 0.14 0.96 0.97 2.95 0.40 0.11 0.14 0.97 0.98 2.49

170 0.3 0.11 0.14 0.94 0.97 3.52 0.43 0.11 0.14 0.97 0.98 2.70

200 0.3 0.11 0.14 0.91 0.97 4.50 0.47 0.11 0.14 0.96 0.99 3.21

Overall R2 & RMSD 0.98 3.23 Overall R2 & RMSD 0.98 2.71
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